Hexahalorhenate(IV) Salts of Protonated Ciprofloxacin: Antibiotic-Based Single-Ion Magnets

Adrián Sanchis-Perucho,^a Marta Orts-Arroyo,^a Javier Camús-Hernández,^a Carlos Rojas-Dotti,^a Emilio Escrivà,^b Francesc Lloret^a and José Martínez-Lillo^{*a}

^aInstituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain. ^bDepartament de Química Inorgànica, Facultat de Química, Universitat de València, Av. Vicente Andrés Estellés s/n, 46100, Burjassot (València), Spain.

Table of contents

Figure S12
Table S13
Figure S24
Figure S35
Figure S45
Figure S5
Figure S66
Figure S77
Figure S87
Figure S9
Table S29
Table S39
Figure S1010
Figure S11

Figure S1. Plot of the theoretical and experimental XRD patterns profile $(2\theta/^{\circ})$ in the range 0-45° for compounds **1** (top) and **2** (bottom).

20 / °

Compound	1	2
CCDC	2112864	2112865
Formula	$C_{34}H_{41}CI_7F_2N_6O_7Re$	$C_{34}H_{38}Br_{6}F_{2}N_{6}O_{6}Re$
<i>M</i> _r /g mol ⁻¹	1118.08	1330.36
Crystal system	Monoclinic	Orthorhombic
Space group	P21/c	Pbca
a/Å	15.357(1)	16.864(1)
b/Å	20.431(1)	11.704(1)
c/Å	13.482(1)	20.444(1)
α /°	90	90
β /°	112.67(1)	90
γ /°	90	90
V / Å ³	3903.1(3)	4035.3(2)
Ζ	4	4
$D_{\rm c}/{\rm g~cm}^{-3}$	1.903	2.190
μ (Mo-K _{α})/mm ⁻¹	3.660	9.013
F(000)	2220	2540
Goodness-of-fit on <i>F</i> ²	1.095	1.050
$R_1 [I > 2\sigma(I)] / (all data)$	0.0127 / 0.0139	0.0192 / 0.0329
$wR_2 \left[l > 2\sigma(l) \right] / (all data)$	0.0360 / 0.0371	0.0280 / 0.0354
$\Delta \rho$ peak and hole / e.Å ⁻³	0.493 and -0.808	0.441 and -0.387

Table S1. Summary of the crystal data and structure refinement parameters for 1and 2.

Figure S2. Perspective view of the arragment of adjacent $[ReX_6]^{2-}$ [X = Cl(1) and Br(2)] anions (pink polyhedra) in the crystal of 1 (top) and 2 (bottom). Crystallization water molecules and Cl⁻ anions (1) and protonated organic cations (1 and 2) have been omitted for clarity.

Figure S3. Perspective view along the *b*-axis direction of the packing between $[\text{Hcip}]^+$ cations (ball-and-stick model) and $[\text{ReBr}_6]^{2-}$ anions (space-filling model) in the crystal of **2**.

Figure S4. Detail of the H-bonding interaction between neighboring -COOH and -NH₂ groups connecting the [Hcip]⁺ cations in the crystal structure of **2** [O(1)····N(3e) distance of *ca*. 2.85(1) Å; (e) = x, 1/2-y, -1/2+z].

Figure S5. View along the *c*-axis direction of the intermolecular $\pi \cdots F$ type interactions (solid lines) involving quinoline rings and fluorine atoms of adjacent [Hcip]⁺ cations in the crystal structure of **2** [the shortest centroid…fluorine distance being approximately 2.95(1) Å; (f) = -x+1/2, y+1/2, z].

Figure S6. Hirshfeld surface mapped with d_{norm} function for two $[\text{Hcip}]^+$ cations interacting through -COOH and -NH₂ groups in compound **2**.

Figure S7. Intermolecular $O \cdots H$ (left) and $Cl \cdots H$ (right) interactions highlighted from the full fingerprint of the Hirshfeld surface of compound **1**.

Figure S8. Intermolecular O···H (left) and Br···H (right) interactions highlighted from the full fingerprint of the Hirshfeld surface of compound .

Figure S9. Frequency dependence of the out-of-phase ac susceptibility signals under a dc field of 1000 G for **1** (left) and **2** (right). The inset shows the $ln(\tau)$ versus 1/T plot with the fit to the Arrhenius law (dashed line) and the fit considering the contribution of two mechanisms (direct + Raman).

Table S2. Energy barrier (U_{eff}) and preexponential factor (τ_o) values obtained through the dc applied magnetic fields of 1000 and 5000 G and the Arrhenius law for 1 and 2.

Compound	H _{dc} / <i>G</i>	U _{eff} / K	τ_o/s
1	1000	15.8	1.94x10 ⁻⁷
	5000	15.0	3.41x10 ⁻⁷
2	1000	19.7	2.80x10 ⁻⁸
	5000	17.3	1.62x10 ⁻⁷

Table S3. Parameters of the magnetic relaxation obtained through dc applied magnetic fields of 1000 and 5000 G and considerating Direct and Raman processes for 1 and 2.

Compound	H _{dc} /G	$A/s^{-1}K^{1}$	C / <i>s</i> ⁻¹ <i>K</i> ⁿ	n
1	1000	1242.4	45.5	5.6
	5000	2536.4	11.2	6.3
2	1000	1065.6	3.2	8.0
2	5000	2152.0	2.9	7.6

Figure S10. SEM-EDX spectrum for compound 1.

Figure S11. SEM-EDX spectrum for compound 2.