Porous nickel and cobalt hexanuclear ring-like clusters built from two different kind of calixarene ligands - new molecular traps for small volatile molecules

Mariia V. Kniazeva,^a Alexander S. Ovsyannikov,^{a*} Beata Nowicka,^b Nathalie Kyritsakas,^c Aida I. Samigullina,^a Aidar T. Gubaidullin,^a Daut R. Islamov,^d Pavel V. Dorovatovskii,^e Elena V. Popova,^a Sofiya R. Kleshnina,^a Svetlana E. Solovieva,^b Igor S. Antipin,^b Sylvie Ferlay^{c*}

Figure S1. C-H-π interactions between crystallization DMF molecules (light green) and calixarene aromatic rings in (2-2H)₂3₂Co₆. No interactions are observed for the molecules located in the internal channels (N6).

Figure S2. Visualization of the solvent-accessible voids for $(2-2H)_23_2Co_6$ and $(2-2H)_23_2Ni_6$. The view presents structure fragment of 2x2x2 unit cells. In the view along the *a*-axis (left) four internal channels are visible at the center of each cell, while the external channels are visible between the unit cells. The view along the *c*-axis (right) shows the intersection of the external channels and the separated capsules formed by calixarene cavities.

Figure S3. For air-dried (2-2H)₂3₂Co₆ and (2-2H)₂3₂Ni₆, comparison of the simulated and experimental powder X-Ray diffraction studies (PXRD) diagrams at a scan step size of 2° min-1.

Figure S4. For $(2-2H)_2 3_2 Co_6$ and $(2-2H)_2 3_2 Ni_6$ TGA traces recorded between 36 - 450°C at a rate of 10°/mn.

 $2\theta/^{\circ}$ Figure S5. PXRD patterns for air-dried (green), totally desolvated (red) and hydrated (blue) samples of (2-2H)₂3₂Ni₆ compared to simulated one, showing anisotropic peak shifts due to lattice structural variations imposed by the structural adaptation to the guest molecules exchange.

Figure S6. N_2 sorption isotherms at 77K for $(\hbox{2-}2H)_2 \hbox{3}_2 Co_6$ and $(\hbox{2-}2H)_2 \hbox{3}_2 Ni_6.$

Figure S7. Sorption isotherms for $(2-2H)_23_2N_6$ measured by the gravimetric dynamic vapor sorption method at 25°C in the p/p₀ range of a) 0-98% (H₂O), b) 0-80% (CH₃C(O)CH₃), c) 0-90% (EtOH), d) 0-95% (MeOH).

Figure S8. SEM images of the microcrystalline samples of (2-2H)₂3₂Co₆ (left) and (2-2H)₂3₂Ni₆ (right).

Figure S9. Repeated water sorption and desorption cycles for $(2-2H)_2 3_2 Co_6$.

