Electronic Supplementary Information for original paper submitted for publication in **CrystEngComm**

Translational dependence of the geometry of metallic mono- and bilayers optimized at semi-ionic supports. The cases of Pd at γ -Al₂O₃(110), monoclinic ZrO₂(001), and rutile TiO₂(001).

A.A. Rybakov^a, V.A. Larin^b, D.N. Trubnikov^a, S. Todorova^c, A.V. Larin^{a*}

^aDepartment of Chemistry, Moscow State University, GSP-2, Leninskie Gory, Moscow 119992, Russia 119992 ^bTechnology Center Lantan, LTD, Rubtsovskaya naber., 2, korp.4, Moscow, 105082, Russia ^cInstitute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bldg 11, 1113 Sofia, Bulgaria

TOTAL PAGES 8

TABLES 2

FIGURES 3

$U_{Pd} = -4.836$	$U_{Pd} = -4.920$		
2.125	2.174		
2.126	2.164		
2.208	2.137		
2.207	2.138		
2.125	2.159		
2.125	2.150		
2.208	2.156		
2.208	2.164		

Table S1. Pd-O distances and final U_{Pd} values in the bilayer $Pd_{32}(111)$ slabs at the m-ZrO₂(001) (Fig. S2).

Table S2. Relative stabilization energy (eV/Pd) per Pd atom U_{Pd} (1) for single atom, clusters (N = 24), (111) monolayers with vacancies (N = 24-28), full monolayers (N = 28, 30), bilayer (N = 36), and 4-layer Pd(110) (N = 72) deposited over Al₅₆O₈₀ model of γ -Al₂O₃(110) (-959.173/-972.443 eV), Ti₃₆O₇₂ model of TiO₂(001) surface (-931.47/-943.070 eV) and Zr₃₂O₆₄ model of m-ZrO₂(001) surface (-902.078/-914.999 eV) optimized at PBE/PBE-D3 levels.

System	N	-U		-U _{Pd}		Figure
_		PBE	PBE-D3	PBE	PBE-D3	
		γ-	Al_2O_3			
Atom	1	964.487	978.080	5.314	5.637	S1g
		962.960	976.625	3.787	4.182	-
		962.928	976.592	3.755	4.149	-
		245.044 ^{a)}	248.728	5.159	5.538	1b
1-layer	24	1075.617	1099.454	4.852	5.293	2a, b
-		1076.438 ^{b)}	1101.163	4.886	5.364	2c, d
		1073.141 ^{c)}	1097.848	4.749	5.226	2e, f
		1076.671 ^d)	1101.153	4.896	5.363	2g, h
	28	1094.895	1120.937	4.847	5.303	S4c
		1095.404 ^{e)}	1121.211	4.865	5.313	-
		1095.295 ^{f)}	1121.491	4.862	5.323	3h
	30	1105.119	1132.106	4.865	5.322	3i
2-layer(100)	48	1196.118 ^{g)}	1231.586	4.936	5.399	1c
		1196.352 ^{e, g)}	1231.607	4.941	5.399	-
		r	TiO ₂			
Atom	1	934.788	946.878	3.318	3.81	S1a
		934.581	946.683	3.111	3.69	S1b
		934.196	946.370	2.726	3.39	S1c
Cluster	24	1034.136	1056.228	4.278	4.715	le
1-layer (111)	24	1029.716	1053.657	4.094	4.608	S1d
	24 ^{f)}	1029.174	1052.945	4.071	4.578	Sle
	24 ^{h)}	1032.018	1055.457	4.190	4.683	4f
	27	1046.584	1071.924	4.263	4.295	4d, e
	28	1051.996	-	4.305	-	6a
	30	1072.773	1099.998	4.710	5.23	4g,h
	30 ^{f)}	1062.322	1089.401	4.362	4.878	4i, j
	32	1070.756	-	4.353	-	S3b
2-layer(111)	48	1153.110	1187.298	4.618	5.088	S1f
4-layer (110)	72	1270.856	1316.895	4.714	5.192	lf
		m	-ZrO ₂			
Atom	1	906.345	-	4.267	-	S1h
1-layer	16	970.783 ⁱ⁾	991.707	4.294	4.794	5a
		969.970 ^{j)}	991.059	4.243	4.754	-
		971.278 ^{g)}	992.182	4.325	4.824	_
		971.459 ^k)	992.492	4.336	4.843	5b, c
		971.455 ¹⁾	992.485	4.336	4.843	5d
2-layer (111)	32 ^{m)}	597.438 ^{g)}	617.927	4.920	5.417	S2b
		594,750 ^g)	614.605	4.836	5,313	S2a

^{a)} for smaller UC such as $Al_{14}O_{20}$ (-239.885/-243.190 eV, see text); ^{b)} after shift by 1 Å along OY direction; ^{c)} after shift by 2 Å along OY direction; ^{d)} after shift by 3 Å along OY direction; ^{e)} shift by 1 Å along both OX and OY directions; ^{f)} shift by 1 Å along OX direction; ^{g)} (111) model; ^{h)}

"band" type structure; ⁱ⁾ 1/1 model; ^{j)} (100) model; ^{k)} 4R-4R model; ^{l)} "mix" model; ^{m)} thin $Zr_{16}O_{32}$ support model (-440.002/-444.576 eV).

Figure captions

Figure S1. (a-c, g, h) Single Pd atoms, (d-e) Pd_{24} monolayers, (f) Pd_{48} bilayer at (a-f) $Ti_{36}O_{72}$ model of rutile $TiO_2(001)$, (g) $Al_{56}O_{80}$ model of γ -Al₂O₃(110), (h) $Zr_{32}O_{64}$ model of m-ZrO₂(001) surfaces optimized at the PBE level. The stabilization energy per Pd atom U_{Pd} is given in eV/Pd. The atomic colors are given in red, magenta, green, cyan light, and gray for O, Al, Ti, Zr, and Pd, respectively.

Figure S2. Upper projection of $Pd_{32}(111)$ bilayers at $Zr_{32}O_{64}$ model of m-ZrO₂(001) surfaces optimized at the PBE level. The stabilization energy U_{Pd} per Pd atom is given in eV/Pd. The atomic color agreement corresponds to Fig. S1.

Figure S3. (a, b) Side and (c) upper projection of (a) as deposited (non-optimized) $Pd_{32}(100)$, optimized (b) Pd_{32} and (c) $Pd_{28}(111)$ monolayers at $Ti_{36}O_{72}$ model of m-TiO₂(001) surfaces optimized at the PBE level. The stabilization energy U_{Pd} per Pd atom is given in eV/Pd. Divacancy is shown by ellipse (c). The atomic color agreement corresponds to Fig. S1.

Figure S1

(e) -4.071

(f) -4.618

(g) -5.314

Figure S3

(c) -4.305

