Supporting Information

Synergistic Phase and Crystallinity Engineering in Cubic RuSe₂ Catalyst toward

Efficient Hydrogen Evolution Reaction

Wei Zhan, Nan Li*, Shixiang Zuo, Zhimin Guo, Chenghong Qiang, Zhengping Li and

Jiangquan Ma^*

Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation

Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.

Fig. S1 SEM images of (a) Fresh-RuSe₂, (b) RuSe₂-200, (c) RuSe₂-250, (d) RuSe₂-300, (e) RuSe₂-400, and (f) RuSe₂-600.

Fig. S2 EDS spectrum of RuSe₂-500.

Fig. S3 Particle size distribution of RuSe₂-300 (a), RuSe₂-400 (b), RuSe₂-500 (c), and RuSe₂-600 (d). The average diameter is 9.89, 9.87, 9.81 and 9.69 nm, respectively.

Fig. S4 XRD patterns of Fresh-RuSe₂ and RuSe₂-200.

Fig. S5 1T-phase and crystallinity ratios in RuSe₂-250, RuSe₂-300, RuSe₂-400, RuSe₂-500 and RuSe₂-600.

Fig. S6 Onset potential and overpotential at current density of 10 mA·cm⁻² for Pt/C, Fresh-RuSe₂, RuSe₂-250, RuSe₂-300, RuSe₂-400, RuSe₂-500 and RuSe₂-600.

Fig. S7 CV curves of (a) Fresh-RuSe₂, (b) RuSe₂-250, (c) RuSe₂-300, (d) RuSe₂-400, (e) RuSe₂-500, and (f) RuSe₂-600 at various scan rates from 20-120 mV/s.

Fig. S8 XRD pattern of RuSe₂-500 after long-time stability test.

Fig. S9 SEM image of RuSe₂-500 after long-time stability test.

Fig. S10 TEM image of RuSe₂-500 after long-time stability test.

Catalyst	ΣI_c	ΣI_a	Crystallinity	
RuSe ₂ -250	47159.15	2694651.85	1.72%	
RuSe ₂ -300	75666.15	150000.85	33.53%	
RuSe ₂ -400	365593.19	167263.81	68.61%	
RuSe ₂ -500	526038.99	80346.01	86.75%	
RuSe ₂ -600	625958.69	76576.32	89.10%	

 Table S1. Data for calculating crystallinity of RuSe2 catalysts.

Catalyst	Mass loading (mg cm ⁻²)	Substrate	Electrolyte	η (mV) at 10 mA cm ⁻²	Ref
h-RuSe ₂	0.30	GC	1.0 M KOH	34	S1
Ru _x Se	1	CFP	1.0 M KOH	45	S2
RuSe ₂ /CNT	0.437	RDE	1.0 M KOH	29.5	S3
Ru _{0.33} Se@TNA	-	CC	1.0 M KOH	57	S4
RhSe ₂	0.34	GC	1.0 M KOH	81.6	S5
PdSe ₂	0.34	GC	1.0 M KOH	138	S 6
IrSe ₂	0.25	GC	1.0 M KOH	72	S7
RuS ₂	0.278	GC	1.0 M KOH	78	S 8
RuS _x /S-GO	1	CFP	1.0 M KOH	58	S 9
RuP ₂ @NPC	1	GC	1.0 M KOH	52	S10
Ru-MoS ₂ /CNT	1	CFP	1.0 M KOH	50	S11
Ru _{0.10} @2H- MoS ₂	0.285	GC	1.0 M KOH	51	S12
Ni-W-600	3	GC	1.0 M KOH	59	S13
CuCo ₂ -P	6.5	CF	1.0 M KOH	49.5	S14
RuTe ₂	-	GC	1.0 M KOH	34	S15
RuSe ₂ -500	0.275	GC	1.0 M KOH	29	This work
Pt/C	0.275	GC	1.0 M KOH	31	This work

Table S2 Comparison of the features of HER parameters between the present $RuSe_2$ -500 andother electrocatalytic materials in the literature.

Supplementary References

S1. Y. M. Zhao, H. J. Cong, P. Li, D. Wu, S. L. Chen, W. Luo, Angew. Chem., Int. Ed., 2021, 60, 7013-7017.

 K. F. Wang, B. Li, W. Wei, J. G. Wang, Q. Shen, P. Qu, Nanoscale, 2020, 12, 23740-23747.

- S3. Z. Zhang, C. Jiang, P. Li, K. G. Yao, Z. L. Zhao, J. T. Fan, H. Li, H. J. Wang, Small, 2021, 17, 2007333.
- S4. K. F. Wang, Q. Chen, Y. Y. Hu, W. Wei, S. Z. Wang, Q. Shen, P. Qu, *Small*, 2018, 14, 1802132.
- S5. W. W. Zhong, B. B. Xiao, Z. P. Lin, Z. P. Wang, L. G. Huang, S. J. Shen, Q. H. Zhang,
 L. Gu, *Adv. Mater.*, 2021, 33, 2007894.
- S6. Z. P. Lin, B. B. Xiao, Z. P. Wang, W. Y. Tao, S. J. Shen, L. A. Huang, J. T. Zhang, F. Q.
 Meng, Q. H. Zhang, L. Gu, W. W. Zhong, *Adv. Funct. Mater.*, 2021, **31**, 2102321.
- S7. T. T. Zheng, C. Y. Shang, Z. H. He, X. Y. Wang, C. Cao, H. L. Li, R. Si, B. C. Pan, S.
 M. Zhou, J. Zeng, *Angew. Chem., Int. Ed.*, 2019, 58, 14764-14769.
- Y. L. Zhu, H. A. Tahini, Y. Wang, Q. Lin, Y. Liang, C. M. Doherty, Y. Liu, X. Y. Li, J.
 Lu, S. C. Smith, C. Selomulya, X. W. Zhang, Z. P. Shao, H. T. Wang, *J. Mater. Chem. A*, 2019, 7, 14222-14232.
- S. Li, X. X. Duan, S. Y. Wang, L. R. Zheng, Y. P. Li, H. H. Duan, Y. Kuang, X. M.
 Sun, *Small*, 2019, 15, 1904043.
- S10. Z. H. Pu, I. S. Amiinu, Z. K. Kou, W. Q. Li, S. C. Mu, Angew. Chem., Int. Ed., 2017,
 56, 11559-11564.

- S11. X. Zhang, F. Zhou, S. Zhang, Y. Y. Liang, R. H. Wang, Adv. Sci., 2019, 6, 1900090.
- S12. J. Wang, W. H. Fang, Y. Hu, Y. H. Zhang, J. Q. Dang, Y. Wu, B. Z. Chen, H. Zhao, Z.
 X. Li, *Appl. Catal.*, *B*, 2021, **298**, 120490.
- S13. Y. K. Li, G. Zhang, H. Huang, W. T. Lu, F. F. Cao, Z. G. Shao, Small, 2020, 16, 2005184.
- S14. Y. Cheng, Y. Pei, P. Y. Zhuang, H. Chu, Y. D. Cao, W. Smith, P. Dong, J. F. Shen, M.X. Ye, P. M. Ajayan, *Small*, 2019, 15, 1904681.
- S15. B. Tang, X. D. Yang, Z. H. Kang, L. G. Feng, Appl. Catal., B, 2020, 278, 119281.