Electronic Supporting Information

Rational synthesis of isomorphic rare earth metal-organic framework materials for simultaneous adsorption and photocatalytic degradation of organic dyes in water

Meng-Ting Hang,^a Yi Cheng,^a Yi-Tong Wang,^b Huan Li,^a Meng-Qi Zheng,^a Ming-Yang He,^{a,*} Qun Chen,^a and Zhi-Hui Zhang^{a,c*}

^aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P.R. China ^bChina International Engineering Consulting Corporation, Beijing 100089, China ^cJiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.

E-mail address: zhangzh@cczu.edu.cn (Z.H.Z.) and hmy@cczu.edu.cn (M.Y.H.).

Fig. S1. XRD spectra of Tb-TPTC at different pH values.

Fig. S2 Standard curve diagram of different dyes.

Photoluminescent Properties

Fig. S3 showed the emission spectra of Eu^{3+} / Tb^{3+} in different ratios. The Eu-TPTC and Tb-TPTC exhibited series of sharp bands corresponding to the characteristic transitions of ${}^5D_0 \rightarrow {}^7F_J$ (J = 0–4) and ${}^5D_4 \rightarrow {}^7F_J$ (J = 6–3). Eu-TPTC was red, and Tb-TPTC was green. As the Eu³⁺ concentration increased, the emission color of the compound also changed from green to orange to red. It was worth noting that the Eu³⁺ emission was dominant when the Eu³⁺ ratio increased to Eu : Tb = 4:1 and the Tb³⁺ emission was dominant when the Tb³⁺ ratio increased to Eu : Tb = 1:9.

Fig. S3 Emission spectra of Eu³⁺/Tb³⁺ with different molar ratios and the corresponding CIE chromaticity.

Fig. S4 UV-vis absorption spectra of different dyes adsorption over Eu-TPTC.

Fig. S5 UV-vis absorption spectra of different dyes degradation over Eu-TPTC.

Fig. S6 UV-vis absorption spectra of different dyes adsorption over Tb-TPTC.

Fig. S7 UV-vis absorption spectra of different dyes degradation over Tb-TPTC

Fig. S8 (a) XRD patterns of Eu-TPTC before and after adsorption of different dyes; (b) XRD patterns of Eu-TPTC before and after degradation of different dyes; (c) XRD patterns of Tb-TPTC before and after adsorption of different dyes; (d) XRD patterns of Tb-TPTC before and after degradation of different dyes.

Fig. S9 (a) FTIR spectra of Eu-TPTC before and after adsorption of different dyes; (b) FTIR spectra of Eu-TPTC before and after degradation of different dyes; (c) FTIR spectra of Tb-TPTC before and after adsorption of different dyes; (d) FTIR spectra of Tb-TPTC before and after degradation of different dyes.

Eu-TPTC					
Bond	Length/Å	Bond	Length/Å		
Eu1–O1	2.362(4)	Eu1–O2#2	2.357(4)		
Eu1–O5#1	2.355(4)	Eu1–O5#3	2.690(5)		
Eu1–O6#3	2.423(5)	Eu1–O7	2.537(5)		
Eu1-O8	2.496(5)	Eu1-O10	2.435(5)		
Eu1-O11	2.402(5)				
Bond	Angles/°	Bond	Angles/°		
O1-Eu1-O5#3	70.05(15)	O1-Eu1-O6#3	77.52(16)		
O1-Eu1-O7	70.11(17)	O1-Eu1-O8	73.92(18)		
O1-Eu1-O10	139.84(17)	O1-Eu1-O11	133.35(17)		
O2#2-Eu1-O1	134.08(16)	O2#2-Eu1-O5#3	68.30(15)		
O2#2-Eu1-O6#3	90.51(17)	O2#2-Eu1-O7	144.66(17)		
O2#2-Eu1-O8	146.23(18)	O2#2-Eu1-O10	74.02(18)		
O2#2-Eu1-O11	75.68(17)	O5#1-Eu1-O1	73.07(16)		
O5#1-Eu1-O2#2	77.48(16)	O5#1-Eu1-O5#3	73.69(16)		
O5#1-Eu1-O6#3	123.14(15)	O5#1-Eu1-O7	90.26(18)		
O5#1-Eu1-O8	135.63(17)	O5#1-Eu1-O8	135.63(17)		
O5#1-Eu1-O11	83.82(18)	O6#3-Eu1-O5#3	50.66(14)		
O6#3-Eu1-O7	123.25(17)	O6#3-Eu1-O8	76.49(19)		
O6#3-Eu1-O10	73.84(18)	O7-Eu1-O5#3	139.86(16)		
O8-Eu1-O5#3	120.44(19)	O8-Eu1-O7	50.65(19)		
O10-Eu1-O5#3	109.94(17)	O10-Eu1-O7	103.5(2)		
O10-Eu1-O8	72.45(19)	O11-Eu1-O5#3	140.69(16)		
O11-Eu1-O6#3	146.69(18)	O11-Eu1-O7	70.07(17)		
O11-Eu1-O8	98.2(2)	O11-Eu1-O10	73.3(2)		

Table S1 Selected bond lengths and angles for Eu-TPTC.

Symmetry transformations used to generate equivalent atoms: For Eu-TPTC, #1:x, -y + 2, z + 1/2; #2:-x + 1/2, -y + 3/2, -z; #3:-x + 1/2, y - 1/2, -z - 1/2.

Dyes	$\lambda_{max} (nm)$	Standard curve	R ²
MB	665	y = 204.554x-0.03169	0.9989
CV	592	y= 130.575x-0.01981	0.9988
RhB	555	y = 96.176x-0.00053	0.9989
NR	553	y = 90.125x-0.04397	0.9921
МО	466	y = 62.025x + 0.00293	0.9984
CR	497	y = 12.175x-0.00253	0.9772

Table S2 Standard curve of the maximum absorption wavelength of different types of dyes.

Fig. S10. SEM images of Eu-TPTC and Tb-TPTC before and after RhB degradation (a) Eu-TPTC; (b) Tb-TPTC; (c) Eu-TPTC after RhB degradation; (d) Tb-TPTC after RhB degradation.

Adsorption kinetics

The following equation described the pseudo-second-order kinetics model.

$$kt = \frac{1}{C} - \frac{1}{C_0} \tag{1}$$

where C and C₀ referred to the adsorption capacity at equilibrium and time t (h), respectively, k was the rate constant of second-order adsorption ($L \cdot mg^{-1} \cdot h^{-1}$). From the plot of (C₀-C)/C₀C versus t, as shown in Fig. S11, a linear graph could be fitted, from which values of C and k could be determined from the slope and the intercept, respectively.

Dyes	C ₀ (mg L ⁻¹)	C (mg L ⁻¹)	k (L mg ⁻¹ h ⁻¹)	R ²
MB	9.024	0.290	0.759	0.921
NR	8.387	0.392	0.430	0.928
МО	10.210	4.440	0.024	0.959

Table S3 Pseudo-second-order kinetics parameters for three different types of dyes adsorbed over Eu-TPTC

Table S4 Pseudo-second-order kinetics parameters for three different types of dyes adsorbed over Tb-TPTC

Dyes	C ₀ (mg L ⁻¹)	C (mg L ⁻¹)	$k (L mg^{-1} h^{-1})$	R ²
MB	9.249	0.281	1.030	0.940
NR	7.745	0.991	0.166	0.971
МО	9.921	2.300	0.063	0.909

Fig. S11. Pseudo-second-order kinetic models for three different types of dyes (a) Eu-TPTC; (b) Tb-TPTC.