Spectral characteristics of Nd³⁺/Yb³⁺:YPO₄ single crystal with strong multi-wavelength emission

Yang Che^{‡a}, Fei Zheng^{‡a}, Jingyao Lu^a, Yanzhen Yin^a, Zhen Wang^a, Degao Zhong^{abc}, Shijia Sun^{*ab} and Bing Teng^{*abc}

^a College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China

^b National Demonstration Center for Experiment Applied Physics Education (Qingdao University),

Qingdao 266071, China

^c Shandong Provincial University Key Laboratory of Optoelectrical Material Physics and Devices,

Qingdao 266071, China

* Corresponding author. E-mail: ssj1027@126.com (Shijia Sun), 5108tb@163.com (Bing Teng)

† Electronic supplementary information (ESI) available: The reaction formula, calculation of emission cross-sections, I_{sat} , β_{min} and I_{min} . See DOI: 10.1039/x0xx00000x

‡ Yang Che and Fei Zheng contributed equally to this work.

Eqn. S1 PbHPO₄ decomposes chemical reaction equation. Eqn. S2 Nd_x:Yb_y:Y_(1-x-y)PO₄ synthesis chemical reaction equation. Calculations of emission cross-sections. (Equations S3-S5) Calculations of I_{sat} , β_{min} and I_{min} . (Equations S6-S8) Eqn. S1 PbHPO₄ decomposes chemical reaction equations.

$$2PbHPO_4 = Pb_2P_2O_7 + H_2O \qquad (S1)$$

Eqn. S2 $Nd_x: Yb_y: Y_{(1-x-y)}PO_4$ synthesis chemical reaction equation.

$$Pb_{2}P_{2}O_{7} + (1-x-y)Y_{2}O_{3} + xNd_{2}O_{3} + yYb_{2}O_{3} = 2Nd_{x}:Yb_{y}:Y_{(1-x-y)}PO_{4} + 2PbO$$
 (S2)
Where x=0.8 at.%, y=2.0 at.%.

Calculations of emission cross-sections.

We calculated the emission cross section of Nd^{3+} and Yb^{3+} ions by RM method formula (**S3**) and F-L method formula (**S5**), respectively.

$$\sigma_{em}^{i}(\lambda) = \frac{3\sigma_{abs}^{i}\exp(-hc/kT\lambda)}{8\pi n^{2}\tau_{rad}c\sum_{j}\lambda^{-4}\sigma_{abs}^{j}(\lambda)\exp(-hc/(kT\lambda))d\lambda}$$
(83)

h is the Planck constant, *c* is the speed of light in vacuum, *k* is the Boltzmann constant, *T* is absolute temperature, *n* is the refractive index, τ_{rad} is the radiation lifetime, which can be calculated by the following formula.

$$\tau_{\rm rad} = \frac{3}{8\pi n^2 c} \frac{Z_l}{Z_u} \frac{\exp(-hc/(k_B T\lambda))}{\sum_j \lambda^{-4} \sigma_{abs}^j(\lambda) \exp(-hc/(k_B T\lambda)) d\lambda}$$
(84)

 Z_u is the high energy level group, Z_l is the low energy level group, where g_k is the degeneracy of each sub level, k_B is Boltzmann constant.

$$\sigma_{em}^{F-L}(\lambda) = \frac{\lambda^5}{8\pi n^2 c} \frac{1}{\tau_{rad}} \frac{I(\lambda)}{\int \lambda I(\lambda) d\lambda}$$
(85)

 $I(\lambda)$ represents the optical density.

Calculations of I_{sat} , β_{min} and I_{min} .

 I_{sat} represents the pump saturation intensity, which is a measure of the ease with which the Yb³⁺ ions population must be bleached to overcome the ground state absorption, is given by the equation:

$$I_{sat} = hc/[\lambda_p \sigma_{abs}(\lambda_p)\tau_f]$$
 (S6)

Where λ_p is the pump wavelength, *h* is the Planck constant, $\sigma_{abs}(\lambda_p)$ is absorption cross-sections at the pump wavelength λ_p .

The minimum fraction of Yb³⁺ ions that must be excited such that the ground state absorption and the gain exactly balance, and there is net transparency at λ_{ext} . And the equation can be expressed by

$$\beta_{min} = \sigma_{abs}(\lambda_{ext}) / [\sigma_{abs}(\lambda_{ext}) + \sigma_{ext}(\lambda_{ext})]$$
(S7)

 I_{min} represents the minimum absorbed pump intensity required to reach the threshold. It can be obtained from the following equation:

$$I_{min} = \beta_{min} \times I_{sat}$$
 (S8)