Supporting Information

Porous direct Z-scheme heterostructures of S-deficient CoS/CdS

hexagonal nanoplates for robust photocatalytic H₂ generation

Zhihui Li,^a Hanchu Chen,^{a,c} Yanyan Li,^a Hui Wang,^{a,c} Yanru Liu,^a Xia Li,^d Haifeng Lin,^{a,*} Shaoxiang Li^b and Lei Wang^{a,b}

^a Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

^b Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

^c Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

^{*d*} Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China

* Corresponding author. E-mail address: hflin20088@126.com (H. Lin).

Fig. S1. XRD patterns of (a) $Co_2V_2O_7 \cdot nH_2O$ and (b) $Co_3(VO_4)_2$ HNPs.

Fig. S2. SEM images of (a) $Co_2V_2O_7 \cdot nH_2O$ and (b) $Co_3(VO_4)_2$ HNPs.

Fig. S3. (a, c) TEM and (b, d) HRTEM images of (a, b) CoS HNPs and (c, d) CdS nanocrystals.

Fig. S4. N_2 adsorption-desorption isotherms and corresponding pore-size distributions of (a) CoS HNPs, (b) CdS nanocrystals, and (c) CoS/40% CdS hybrid HNPs.

Fig. S5. XPS survey spectrum of the CoS/40% CdS hybrid HNPs.

Fig. S6. (a) Photocatalytic H_2 evolution activities of different samples. (b) Average HER rates of CoS/40% CdS measured with different sacrificial agents.

Fig. S7. Photocatalytic HER activity of CoS/40% CdS measured for 12 hours.

Fig. S8. SEM graph of the CoS/40% CdS composite after photocatalytic reaction.

Fig. S9. XRD pattern of the CoS/40% CdS hybrid after photocatalytic test.

Fig. S10. HER activities of CoS/40% CdS tested under 400-nm and 420-nm monochromatic-light irradiation.

Fig. S11. Mott-Schottky curves of (a) CoS HNPs and (b) CdS nanocrystals.

Photocatalyst	Hole scavenger	Light source	Maximum rate	AQY	Reference
	(aqueous solution)	(Xe lamp)	(mmol·h⁻¹·g⁻¹)	(420 nm)	
CoS/CdS	Lactic acid	λ > 400 nm	39.29	12.5%	This work
				14.5% (400 nm)	
CdS/Co₃S₄	Lactic acid	λ > 420 nm	1.08	-	[1]
CdS/CoS _x	Lactic acid	λ > 420 nm	9.47	-	[2]
CdS/Co ₉ S ₈	Lactic acid	λ > 420 nm	11.60	-	[3]
CoS _x /Mn _{0.5} Cd _{0.5} S	Na_2S/Na_2SO_3	λ > 420 nm	8.60	4.7%	[4]
CdS/Co ₉ S ₈	Na_2S/Na_2SO_3	λ > 420 nm	1.06	-	[5]
CdS/Co ₉ S ₈ -RGO	Na ₂ S/Na ₂ SO ₃	λ > 420 nm	4.82	-	[6]
Co ₃ S ₄ /Co-CdS	Na_2S/Na_2SO_3	λ > 420 nm	15.17	-	[7]

Table S1. Visible-light-induced HER activities of CdS- and CoS-based composite photocatalysts.

CdS/CoS ₂	Ascorbic acid	λ > 420 nm	5.54	10.2%	[8]
Co ₉ S ₈ /CdS	Na_2S/Na_2SO_3	λ > 420 nm	14.96	-	[9]
Co _x S/SCN	Triethanolamine	λ > 420 nm	0.57	-	[10]
CdS/CoO _x	Na_2S/Na_2SO_3	λ > 420 nm	3.50	-	[11]
CdS/Co-MoS _x	Lactic acid	λ > 420 nm	13.50	23.5%	[12]
CdS/CoMoS₄	Lactic acid	λ > 420 nm	2.68	-	[13]
a-CoMoS _x /CdS	Lactic acid	λ > 420 nm	3.57	-	[14]
Cd _{0.5} Zn _{0.5} S/CoO	Na_2S/Na_2SO_3	λ > 420 nm	1.78	-	[15]
Co ₃ S ₄ /CNNS	Triethanolamine	λ > 420 nm	20.54	7.9%	[16]
CdS/CoO	Lactic acid	λ > 420 nm	6.45	-	[17]
WO ₃ /CoS ₂	Triethanolamine	λ ≥ 420 nm	4.42	-	[18]
Co ₉ S ₈ /Zn _{0.5} Cd _{0.5} S	Na ₂ S/Na ₂ SO ₃	λ > 400 nm	10.90	_	[19]
CoS ₂ /g-C ₃ N ₄	Triethanolamine	λ > 420 nm	0.58	1.1%	[20]

References:

- [1] F. Zhang, H.Q. Zhuang, J. Song, Y.L. Men, Y.X. Pan, S.H. Yu, Coupling cobalt sulfide nanosheets with cadmium sulfide nanoparticles for highly efficient visible-light-driven photocatalysis, *Appl. Catal. B: Environ.*, 2018, **226**, 103–110.
- [2] W. B. Li, K. Fang, Y. G. Zhang, Z. W. Chen, L. Wang and Y. Y. Bu, Fabrication of 1D/2D CdS/CoS_x direct Z-scheme photocatalyst with enhanced photocatalytic hydrogen evolution performance, *Int. J. Hydrogen Energy*, 2021, **46**, 9351-9359.
- [3] C. Feng, Z. Y. Chen, J. P. Jing, M. M. Sun, J. Han, K. Fang and W. B. Li, Synergistic effect of hierarchical structure and Z-scheme heterojunction constructed by CdS nanoparticles and nanoflower-structured Co₉S₈ with significantly enhanced photocatalytic hydrogen production performance, *J. Photochem. Photobiol. A: Chem.*, 2021, **409**, 113160.
- [4] M. D. Wang, Q. W. Liu, N. Xu, N. X. Su, X. X. Wang and W. Y. Su, An amorphous CoS_x modified Mn_{0.5}Cd_{0.5}S solid solution with enhanced visible-light photocatalytic H₂-production activity, *Catal. Sci. Technol.*, 2018, 8, 4122-4128.
- B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing and J. Zhang, Efficient Solar Light Harvesting CdS/Co₉S₈
 Hollow Cubes for Z-Scheme Photocatalytic Water Splitting, *Angew. Chem. Int. Ed.*, 2017, 56, 2684-2688.
- [6] S. S. Kai, B. J. Xi, H. B. Li and S. L. Xiong, Z-scheme CdS/Co₉S₈-RGO for photocatalytic hydrogen production, *Inorg. Chem. Front.*, 2020, 7, 2692-2701.
- [7] Y. P. Liu, B. X. Wang, Q. Zhang, S. Y. Yang, Y. H. Li, J. L. Zuo, H. J. Wang and F. Peng, A novel bicomponent Co₃S₄/Co@C cocatalyst on CdS, accelerating charge separation for highly efficient photocatalytic hydrogen evolution, *Green Chem.*, 2020, **22**, 238-247.
- P. F. Wang, Y. S. Mao, L. N. Li, Z. R. Shen, X. Luo, K. F. Wu, P. F. An, H. T. Wang, L. N. Su, Y. Li and S. H. Zhan, Unraveling the Interfacial Charge Migration Pathway at the Atomic Level in a Highly Efficient Z-Scheme Photocatalyst, *Angew. Chem. Int. Ed.*, 2019, **58**, 11329-11334.
- [9] C. Xia, C. Y. Xue, W. X. Bian, J. Liu, J. J. Wang, Y. J. Wei and J. B. Zhang, Hollow Co₉S₈/CdS Nanocages as Efficient Photocatalysts for Hydrogen Evolution, ACS Appl. Nano Mater., 2021, 4,

2743-2751.

- [10] Q. H. Shen, R. H. Bibi, L. F. Wei, D. D. Hao, N. X. Li and J. C. Zhou, Well-dispersed CoS_x nanoparticles modified tubular sulfur doped carbon nitride for enhanced photocatalytic H₂ production activity, *Int. J. Hydrogen Energy*, 2019, **44**, 14550-14560.
- [11] Y. Liu, S. P. Ding, Y. Q. Shi, X. F. Liu, Z. Z. Wu, Q. Q. Jiang, T. F. Zhou, N. K. Liu and J. C. Hu, Construction of CdS/CoO_x core-shell nanorods for efficient photocatalytic H₂ evolution, *Appl. Catal. B: Environ.*, 2018, **234**, 109–116.
- [12] Y. G. Lei, J. H. Hou, F. Wang, X. H. Ma, Z. L. Jin, J. Xu and S. X. Min, Boosting the catalytic performance of MoS_x cocatalysts over CdS nanoparticles for photocatalytic H₂ evolution by Co doping via a facile photochemical route, *Appl. Surf. Sci.*, 2017, **420**, 456–464.
- [13] Q. H. Li, X. Q. Qiao, Y. L. Jia, D. F. Hou and D. S. Li, Amorphous CoMoS₄ Nanostructure for Photocatalytic H₂ Generation, Nitrophenol Reduction, and Methylene Blue Adsorption, ACS Appl. Nano Mater., 2020, 3, 68-76.
- [14] W. J. Liu, X. F. Wang, H. G. Yu and J. G. Yu, Direct Photoinduced Synthesis of Amorphous CoMoS_x Cocatalyst and Its Improved Photocatalytic H₂-Evolution Activity of CdS, ACS Sustainable Chem. Eng., 2018, 6, 12436–12445.
- [15] H. T. Zhao, L. Y. Guo, C. W. Xing, H. Y. Liu and X. Y. Li, A homojunction–heterojunction– homojunction scaffold boosts photocatalytic H₂ evolution over Cd_{0.5}Zn_{0.5}S/CoO hybrids, *J. Mater. Chem. A*, 2020, **8**, 1955–1965.
- [16] H. C. Yang, J. M. Yin, R. Y. Cao, P. X. Sun, S. W. Zhang and X. J. Xu, Constructing highly dispersed OD Co₃S₄ quantum dots/2D g-C₃N₄ nanosheets nanocomposites for excellent photocatalytic performance, *Sci. Bull.*, 2019, **64**, 1510-1517.
- [17] J. Y. Chu, G. J. Sun, X. J. Han, X. Chen, J. J. Wang, W. Hu, I. Waluyo, A. Hunt, Y. C. Du, B. Song and P. Xu, Ultrafine CoO nanoparticles as an efficient cocatalyst for enhanced photocatalytic hydrogen evolution, *Nanoscale*, 2019, **11**, 15633-15640.
- [18] L. J. Ma, J. Xu, L. J. Li, M. Mao and S. Zhao, Hydrothermal synthesis of WO₃/CoS₂ n–n heterojunction for Z-scheme photocatalytic H₂ evolution, *New J. Chem.*, 2020, 44, 18326-18336.
- [19] X. L. Li, R. B. He, Y. J. Dai, S. S. Li, N. Xiao, A. X. Wang, Y. Q. Gao, N. Li, J. F. Gao, L. H. Zhang and L. Ge, Design and fabrication of Co₉S₈/Zn_{0.5}Cd_{0.5}S hollow nanocages with significantly enhanced photocatalytic hydrogen production activity, *Chem. Eng. J.*, 2020, **400**, 125474.
- [20] Y. Z. Zhang, J. W. Shi, Z. X. Huang, X. J. Guan, S. C. Zong, C. Cheng, B. T. Zheng and L. J. Guo, Synchronous construction of CoS_2 in-situ loading and S doping for g-C₃N₄: Enhanced photocatalytic H₂-evolution activity and mechanism insight, *Chem. Eng. J.*, 2020, **401**, 126135.