Supporting Information

Mechanochemical Synthesis of Crystalline U(VI) Triperoxide Solids

Dmytro V. Kravchuk and Dr. Tori Z. Forbes*

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States

* Correspondence to: tori-forbes@uiowa.edu

Table of Contents

Powder X-ray Diffraction

Figure S1: Raw PXRD pattern of m_{30} -UO ₃ -Li ₂ O ₂	3
Figure S2: Raw PXRD pattern of recrystallized <i>m</i> ₃₀ -UO ₃ -Li ₂ O ₂	4
Figure S3: Raw PXRD pattern of m_{15} -UO ₃ -Na ₂ O ₂	5
Figure S4: Raw PXRD pattern of m_{30} -UO ₃ -Na ₂ O ₂	6
Figure S5: Raw PXRD pattern of m_{30} -UO ₃ -Na ₂ O ₂ enhanced 20 10°-50°	7
Figure S6: Raw PXRD pattern of recrystallized <i>m</i> ₃₀ -UO ₃ -Na ₂ O ₂	8
Figure S7: Raw PXRD patterns of UO ₃ + MgO ₂ 30 min 1800 rpm and starting materials	9
Figure S8: Raw PXRD patterns of UO ₃ + CaO ₂ 30 min 1800 rpm and starting materials	10
Figure S9: Raw PXRD patterns of UO ₃ + SrO ₂ 30 min 1800 rpm and starting materials	11
Figure S10: Raw PXRD patterns of UO ₃ + BaO ₂ 30 min 1800 rpm and starting materials	12

Raman Spectroscopy

Figure S11: Raman fitting parameters of solid m_{30} -UO ₃ -Li ₂ O ₂	13
Figure S12: Raman fitting parameters of dissolved m ₃₀ -UO ₃ -Li ₂ O ₂ in H ₂ O 18 hr	14
Figure S13: Raman fitting parameters of recrystallized <i>m</i> ₃₀ -UO ₃ -Li ₂ O ₂	15
Figure S14: Raman fitting parameters of solid m_{15} -UO ₃ -Na ₂ O ₂	16
Figure S15: Raman fitting parameters of solid m_{30} -UO ₃ -Na ₂ O ₂	17
Figure S16: Raman fitting parameters of dissolved m_{30} -UO ₃ -Na ₂ O ₂ in H ₂ O 18 hr	18
Figure S17: Raman fitting parameters of recrystallized m_{30} -UO ₃ -Na ₂ O ₂	19
Figure S18: Raman fitting parameters of solid UO ₃ + MgO ₂ 30 min 1800 rpm	20
Figure S19: Raman fitting parameters of solid UO ₃ + CaO ₂ 30 min 1800 rpm	21
Figure S20: Raman fitting parameters of solid UO ₃ + SrO ₂ 30 min 1800 rpm	22
Figure S21: Raman fitting parameters of solid UO ₃ + BaO ₂ 30 min 1800 rpm	23

Infrared Spectroscopy

Figure S22: Infrared spectrum of solid m_{30} -UO ₃ -Li ₂ O ₂	24
Figure S23: Infrared spectrum of recrystallized m_{30} -UO ₃ -Li ₂ O ₂	25
Figure S24: Infrared spectrum of solid m_{15} -UO ₃ -Na ₂ O ₂	26
Figure S25: Infrared spectrum of solid m_{30} -UO ₃ -Na ₂ O ₂	27
Figure S26: Infrared spectrum of recrystallized m_{30} -UO ₃ -Na ₂ O ₂	28

Scanning Electron Microscopy

Figure S27: Secondary and backscattered images of solid m_{30} -UO ₃ -Li ₂ O ₂	29
Figure S28: Secondary and backscattered images of solid m_{30} -UO ₃ -Li ₂ O ₂	
Figure S29: Secondary and backscattered images of recrystallized m_{30} -UO ₃ -Li ₂ O ₂	
Figure S30: Secondary and backscattered images of recrystallized m_{30} -UO ₃ -Li ₂ O ₂	32
Figure S31: Secondary and backscattered images of solid m_{15} -UO ₃ -Na ₂ O ₂	
Figure S32: Secondary and backscattered images of solid m_{30} -UO ₃ -Na ₂ O ₂	
Figure S33: Secondary and backscattered images of recrystallized m_{30} -UO ₃ -Na ₂ O ₂	
Mechanism of Carbonate Formation	

Figure S1: Raw PXRD pattern of *m*₃₀-UO₃-Li₂O₂

Figure S2: Raw PXRD pattern of recrystallized *m*₃₀-UO₃-Li₂O₂

Figure S3: Raw PXRD pattern of m_{15} -UO₃-Na₂O₂

Figure S4: Raw PXRD pattern of *m*₃₀-UO₃-Na₂O₂

Figure S5: Raw PXRD pattern of m_{30} -UO₃-Na₂O₂ enhanced 20 10°-50°

Figure S6: Raw PXRD pattern of recrystallized *m*₃₀-UO₃-Na₂O₂

Figure S7: Raw PXRD patterns of UO₃ + MgO₂ 30 min 1800 rpm and starting materials

Figure S8: Raw PXRD patterns of UO₃ + CaO₂ 30 min 1800 rpm and starting materials

Figure S9: Raw PXRD patterns of UO₃ + SrO₂ 30 min 1800 rpm and starting materials

Figure S10: Raw PXRD patterns of UO₃ + BaO₂ 30 min 1800 rpm and starting materials

Raman Spectroscopy

Figure S11: Raman fitting parameters of solid m_{30} -UO₃-Li₂O₂

Figure S12: Raman fitting parameters of dissolved *m*₃₀-UO₃-Li₂O₂ in H₂O 18 hr

Figure S13: Raman fitting parameters of recrystallized m₃₀-UO₃-Li₂O₂

Figure S14: Raman fitting parameters of solid m_{15} -UO₃-Na₂O₂

Figure S17: Raman fitting parameters of recrystallized *m*₃₀-UO₃-Na₂O₂

Figure S16: Raman fitting parameters of dissolved m_{30} -UO₃-Na₂O₂ in H₂O 18 hr

Figure S17: Raman fitting parameters of recrystallized *m*₃₀-UO₃-Na₂O₂

Figure S18: Raman fitting parameters of solid UO₃ + MgO₂ 30 min 1800 rpm

Figure S19: Raman fitting parameters of solid UO₃ + CaO₂ 30 min 1800 rpm

Figure S20: Raman fitting parameters of solid UO₃ + SrO₂ 30 min 1800 rpm

Figure S21: Raman fitting parameters of solid UO₃ + BaO₂ 30 min 1800 rpm

Figure S22: Infrared spectrum of solid m_{30} -UO₃-Li₂O₂

Figure S23: Infrared spectrum of recrystallized m_{30} -UO₃-Li₂O₂

Figure S24: Infrared spectrum of solid m_{15} -UO₃-Na₂O₂

Figure S25: Infrared spectrum of solid m_{30} -UO₃-Na₂O₂

Figure S26: Infrared spectrum of recrystallized m_{30} -UO₃-Na₂O₂

Scanning Electron Microscopy

$UO_3 + Li_2O_2$ 30 min 1800 rpm

Secondary Electrons

Figure S29: Secondary and backscattered images of recrystallized m_{30} -UO₃-Li₂O₂

 $UO_3 + Li_2O_2$ 30 min 1800 rpm Secondary Electrons

Backscattered Electrons

Figure S28: Secondary and backscattered images of solid m_{30} -UO₃-Li₂O₂

Backscattered Electrons

Figure S29: Secondary and backscattered images of recrystallized m_{30} -UO₃-Li₂O₂

$UO_3 + Li_2O_2$ 30 min 1800 rpm H₂O recrystallized Secondary Electrons

Backscattered Electrons

Figure S30: Secondary and backscattered images of recrystallized m_{30} -UO₃-Li₂O₂

UO₃ + Na₂O₂ 15 min 1800 rpm Secondary Electrons

Figure S31: Secondary and backscattered images of solid m_{15} -UO₃-Na₂O₂

UO₃ + Na₂O₂ 30 min 1800 rpm Secondary Electrons

Figure S32: Secondary and backscattered images of solid *m*₃₀-UO₃-Na₂O₂

$UO_3 + Na_2O_2$ 30 min 1800 rpm H₂O recrystallized Secondary Electrons

Figure S33: Secondary and backscattered images of recrystallized m_{30} -UO₃-Na₂O₂

Mechanism of Carbonate Formation

anion interactions with molecular carbon dioxide.

Superoxide radicals O_2^{\bullet} are formed in the solid state due to mechanochemical impact on the solid starting materials Li₂O₂ and Na₂O₂ during grinding. The O₂^{•-} within the solid react with molecular CO₂ in gas form by inducing a homolytic cleavage of the C=O bond of the CO₂ carbonyl, which resulting in the formation of the C-O-O⁻ peroxycarbonate adduct and a C-O^{•-} radical in place of carbonyl. The peroxycarbonate adduct C-O-O⁻ performs a nucleophilic attack on the electrophilic carbon of another incoming CO₂ molecule, resulting in peroxydicarbonate anionic radical C₂O₆ ^{•-}, which in turn accepts the unpaired electron from the superoxide radical O₂ ^{•-} resuling in the release of oxygen gas and formation of peroxydicarbonate anion. The peroxydicarbonate anion further undergoes a homolytic cleavage of the O-O bond yielding two equivalents of CO₃ ^{•-} species. Two CO₃ ^{•-} molecules stoichimetrically react with two superoxide radicals O₂ ^{•-} resulting in two equivalents of oxygen gas and two equivalents of carbonate anions CO₃²⁻.