Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

for:

Long-range Supramolecular Synthon Polymorphism: A Case Study of Two New Polymorphic Cocrystals of Ph₂Te₂ – 1,4-C₆F₄I₂.

Yury V. Torubaev^a, Ivan V. Skabitsky^a, Aleksei A. Anisimov^b. Ivan V. Ananyev^b.

^a N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, GSP-1, Leninsky prospect, 31;

^b A.N. Nesmeyanov Institute of Organoelement Compounds, of Russian Academy of Sciences, 119991, Moscow, Russia.

Figure S1

Showing the fragments of the energy framework *ια*. Intermolecular interaction energy values are given in kJ/mol

Figure S3 Showing the fragments of the energy framework of $\mathbf{1}\gamma$. Intermolecular interaction energy values are given in kJ/mol

Figure S4 Showing the fragments of the energy framework of Ph₂Te₂ chains (a) $_{1\beta}$ and layers (b) $_{1\gamma}$. Intermolecular interaction energy values are given in kJ/mol

Figure S5 Showing the I--- π (Ph) HaBs in the fragments of the energy framework (a) $\imath\beta$ and (b) $\imath\gamma$. Intermolecular interaction energy values are given in kJ/mol

Periodic DFT calculations

Energy contributions

Table S1. Cohesion energies and their contributions for native and putative polymorphs of Ph2Te2 and Ph2Se2 as revealed by periodic DFT calculations.

	E_{cryst}^{total}/Z	E ^{total} mol·cryst	$E_{mol \cdot cryst}^{d3}$	$E_{mol \cdot ghosts}^{PBE0}$	E ^{total} mol · isol	E _{BSSE}	E _{def}	E _{latt}	$E_{\rm coh}$
	(a.u.)	(a.u.)	(a.u.)	(a.u.)	(a.u.)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
Ph2Te2									
as	-998.93537	-998.84675	-0.03310	-998.85047	-998.84926	23.10	1.58	-32.50	-30.92
Ph2Se2									
Ph2Te2									
as	-998.93551	-998.84520	-0.03201	-998.85224	-998.84898	24.50	2.37	-32.17	-29.80
Ph2Te2									
Ph2Se2									
as	-5265.40883	-5265.33601	-0.03128	-5265.33149	-5265.33722	16.79	0.76	-28.91	-28.15
Ph2Se2									
Ph2Se2									
as	-5265.40482	-5265.33527	-0.03066	-5265.33086	-5265.33890	16.47	2.28	-27.17	-24.90
Ph2Te2									

Table S2. Difference in some energy descriptors of putative and native polymorphs (kcal/mol).

	E_{cryst}^{total}/Z	E_{mol}^{total} total	E_{mol}^{PBE0} , Bhosts	E ^{total} mol·isol
Ph_2Se_2 as Ph_2Te_2 - Ph_2Se_2 as Ph_2Se_2	2.51	0.46	0.39	-1.06
Ph_2Te_2 as Ph_2Se_2 - Ph_2Te_2 as Ph_2Te_2	0.09	-0.97	1.11	-0.18

Structural data

All crystals were calculated within the $P2_12_12_1$ space group (Z=4, SYMM 1/2+x,1/2-y,-z; SYMM -x,1/2+y,1/2-z; SYMM 1/2-x,-y,1/2+z).

	Atom	X_exp	Y_exp	Z_exp	X_calc	Y_calc	Z_calc
	Se1	0.57419	0.22620	0.55357	-0.42514	0.23914	-0.44953
	Se2	0.93083	0.29623	0.59578	-0.04749	0.30905	-0.40569
	C1	0.54820	-0.00360	0.56790	-0.44994	0.00315	-0.43459
	C2	0.34210	-0.07890	0.54700	0.33795	-0.07915	-0.45501
	C3	0.30830	-0.24500	0.55650	0.30688	-0.24832	-0.44323
	C4	0.47120	-0.33380	0.58600	0.48416	-0.33370	-0.41082
	C5	0.68000	-0.25720	0.60660	-0.30346	-0.25111	-0.39143
	C6	0.71520	-0.09390	0.59660	-0.26978	-0.08279	-0.40332
	C7	0.83570	0.33580	0.67250	-0.15864	0.35003	-0.32797
	C8	0.62990	0.27010	0.69620	-0.37519	0.28096	-0.30478
	C9	0.58640	0.29290	0.75260	-0.42886	0.30436	-0.24671
	C10	0.74020	0.38340	0.78430	-0.26789	0.39622	-0.21191
	C11	0.94130	0.45230	0.76090	-0.05413	0.46694	-0.23561
	C12	0.98950	0.42920	0.70430	0.00127	0.44476	-0.29362
	H1	0.20973	-0.00934	0.52374	0.19598	-0.01313	-0.47948
	H2	0.14936	-0.30432	0.53990	0.14179	-0.31219	-0.45925
	H3	0.44084	-0.46224	0.59368	0.45722	-0.46482	-0.40058
	H4	0.81202	-0.32642	0.63009	-0.16304	-0.31726	-0.36651
	H5	0.87759	-0.03557	0.61173	-0.10333	-0.01836	-0.38843
	H6	0.50453	0.20134	0.67065	-0.50000	0.20692	-0.33149
	H7	0.42878	0.23864	0.77176	0.40337	0.24851	-0.22872
	H8	0.70324	0.40119	0.82860	-0.30985	0.41232	-0.16645
	H9	1.06213	0.52459	0.78649	0.07245	-0.45967	-0.20931
	H10	1.14685	0.48421	0.68528	0.16967	-0.49924	-0.31141
to	1 coll unit	noromator	3.55070(11)	Q 2521(17)	22.007(5)		

Table S3. Experimental (DPHDSE02) and calculated fractional coordinates of native Ph₂Se₂ polymorph.

Experimental cell unit parameters: 5.5878(11) 8.2521(17) 23.907(5)

Calculated cell unit parameters: 5.33945069 7.99110927 23.15620363

Atom	X_exp	Y_exp	Z_exp	X_calc	Y_calc	Z_calc
Te1	0.81469	0.07162	0.08669	-0.20894	0.08381	0.08252
Te2	1.12347	0.32642	0.08037	0.14367	0.33394	0.07590
C1	0.78740	0.04530	0.16560	-0.22625	0.05577	0.16472
C2	0.95370	-0.05490	0.19050	-0.04467	-0.04418	0.19023
C3	0.92790	-0.07820	0.24110	-0.07236	-0.07162	0.24331
C4	0.73490	-0.00510	0.26770	-0.28173	0.00065	0.27094
C5	0.56720	0.09310	0.24270	-0.46173	0.10069	0.24546
C6	0.58860	0.11930	0.19190	-0.43493	0.12839	0.19238
C7	0.82700	0.49700	0.07970	-0.16728	-0.49101	0.07764
C8	0.74790	0.57190	0.12360	-0.23072	-0.40963	0.12315
C9	0.55000	0.68120	0.12270	-0.43982	-0.29903	0.12310
C10	0.42510	0.71790	0.07820	0.41381	-0.26896	0.07785
C11	0.50650	0.64570	0.03450	0.47955	-0.34938	0.03236
C12	0.70250	0.53630	0.03520	-0.31059	-0.45943	0.03216
H1	1.08620	-0.10780	0.17250	0.11648	-0.10178	0.16853
H2	1.04510	-0.14580	0.25780	0.06866	-0.15039	0.26308
H3	0.71760	-0.02180	0.30260	-0.30558	-0.02256	0.31233
H4	0.43340	0.14400	0.26090	0.37213	0.15654	0.26628
H5	0.47020	0.18650	0.17520	0.42043	0.20410	0.17238
H6	0.83080	0.54750	0.15430	-0.11854	-0.43270	0.15875
H7	0.49910	0.73160	0.15270	-0.48819	-0.23590	0.15868
H8	0.28670	0.79110	0.07770	0.24796	-0.18382	0.07799
H9	0.42600	0.67200	0.00370	0.36779	-0.32650	-0.00326
H10	0.75360	0.48700	0.00500	-0.26015	0.47773	-0.00343

Table S4. Experimental (DPHDTE01) and calculated fractional coordinates of native Ph₂Te₂ polymorph.

Experimental cell unit parameters: 5.1523(14) 8.571(3) 26.799(7)

Calculated cell unit parameters: 4.90984374 8.45009815 25.64560249

Atom	X_calc	Y_calc	Z_calc
SE1	-0.18402	0.11221	0.08892
SE2	0.08429	0.35205	0.07896
C1	-0.21042	0.09787	0.16526
C2	-0.03135	0.00163	0.19404
C3	-0.06294	-0.01885	0.24876
C4	-0.27295	0.05678	0.27459
C5	-0.45057	0.15307	0.24585
C6	-0.42054	0.17382	0.19104
C7	-0.19048	-0.48274	0.07653
C8	-0.23224	-0.37323	0.11912
C9	-0.43862	-0.25943	0.11703
C10	0.39840	-0.25354	0.07275
C11	0.44406	-0.36151	0.02990
C12	-0.35057	-0.47584	0.03173
H1	0.13014	-0.05845	0.17348
H2	0.07490	-0.09550	0.27113
Н3	-0.29969	0.03848	0.31724
H4	0.38395	0.21140	0.26558
Н5	0.43852	0.24639	0.16817
H6	-0.10620	-0.37696	0.15391
H7	-0.47221	-0.17556	0.15059
H8	0.23680	-0.16478	0.07169
H9	0.31953	-0.35608	-0.00513
H10	-0 31566	0 43815	-0.00129

H10 -0.31566 0.43815 -0.00129 Calculated cell unit parameters: 5.11885479 7.90578813 24.99639665 $\label{eq:constraint} \textbf{Table S6}. Calculated fractional coordinates of putative Ph_2Te_2 polymorph (Ph_2Te_2 as Ph_2Se_2).$

Atom	X_calc	Y_calc	Z_calc
TE1	-0.33561	0.25516	-0.45583
TE2	0.06607	0.32287	-0.39189
C1	-0.36440	-0.00127	-0.43829
C2	0.42791	-0.08586	-0.45454
C3	0.39867	-0.24852	-0.43878
C4	-0.42641	-0.32567	-0.40610
C5	-0.21664	-0.24250	-0.39146
C6	-0.18444	-0.08113	-0.40797
C7	-0.12425	0.36264	-0.31464
C8	-0.33956	0.28292	-0.30130
C9	-0.44322	0.30404	-0.24816
C10	-0.33085	0.40307	-0.20819
C11	-0.11597	0.48165	-0.22172
C12	-0.01273	0.46316	-0.27492
H1	0.28517	-0.02692	-0.47847
H2	0.23562	-0.31357	-0.45109
H3	-0.45452	-0.45006	-0.39145
H4	-0.07758	-0.30249	-0.36654
H5	-0.01984	-0.01699	-0.39643
H6	-0.42519	0.20196	-0.33179
H7	0.38946	0.24118	-0.23783
H8	-0.41042	0.41851	-0.16652
H9	-0.02776	-0.44036	-0.19097
H10	0 15529	-0 47368	-0 28460

H10 0.15529 -0.47368 -0.28460 Calculated cell unit parameters: 5.11885479 7.90578813 24.99639665

Comparison of conformations

General comparison of theoretical and experimental conformations in crystals by the best mean square overlap of non-hydrogen atoms. Deviations were calculated for non-hydrogen atoms.¹

¹ Hereafter, the following abbreviations are used: exp - experiment; cryst - optimized crystal structure; isol - optimized isolated structure

Figure S8

 Ph_2Se_2 as Ph_2Se_2 exp and Ph_2Se_2 as $Ph_2Te_2_cryst = 1.2161$ Å (weighted R.M.S. deviation, conformational changes)

Figure S9 Ph₂Te₂ as Ph₂Te₂cryst and Ph₂Se₂ as Ph₂Te₂_cryst = 0.2390 Å (weighted r.m.s. deviation)

Figure S10 Ph_2Te_2 as Ph_2Te_2exp and Ph_2Te_2 as $Ph_2Se_2_cryst = 1.1938$ Å (weighted r.m.s. deviation, conformational changes)

Figure S11 .Ph₂Se₂ as Ph₂Se₂ cryst and Ph₂Te₂ as Ph₂Se₂_cryst = 0.2066 Å (weighted r.m.s. deviation) Comparison of theoretical conformations in crystals and isolated states by the best mean square overlap of non-hydrogen atoms. Deviations were calculated for non-hydrogen atoms.

Figure S12

 Ph_2Te_2 as Ph_2Se_2 _isol and Ph_2Te_2 as Ph_2Se_2 _cryst = 1.7944 Å (weighed r.m.s. deviation, a significant deformation. Note, $E_{def} = 1.58$ kcal/mol)

Figure S13 Ph_2Te_2 as Ph_2Se_2 _isol and Ph_2Te_2 as Ph_2Te_2 _isol = 1.4034 Å (weighed r.m.s. deviation, conformational changes)

 Ph_2Te_2 as Ph_2Te_2 _isol and Ph_2Te_2 as Ph_2Te_2 _cryst = 1.9922 Å (weighed r.m.s. deviation, a significant deformation. Note, $E_{def} = 2.37$ kcal/mol)

 Ph_2Te_2 as Ph_2Te_2 _isol and Ph_2Te_2 as Ph_2Se_2 _isol = 1.4068 Å (weighed r.m.s. deviation, conformational changes)

 Ph_2Se_2 as Ph_2Te_2 _isol and Ph_2Se_2 as Ph_2Te_2 _cryst = 1.4571 Å (weighed r.m.s. deviation, a significant deformation. Note, $E_{def} = 2.28$ kcal/mol)

 Ph_2Se_2 as Ph_2Te_2 _isol and Ph_2Se_2 as Ph_2Se_2 _isol = 1.3939 Å (weighed r.m.s. deviation, conformational changes)

Figure S18

 Ph_2Se_2 as Ph_2Se_2 _isol and Ph_2Se_2 as Ph_2Se_2 _cryst = 1.2749 Å (weighed r.m.s. deviation, a significant deformation. Note, $E_{def} = 0.76$ kcal/mol)

Figure S19

 Ph_2Se_2 as Ph_2Se_2 _isol and Ph_2Se_2 as Ph_2Te_2 _isol = 1.3915 Å (weighed r.m.s. deviation, conformational changes)

NBO analysis

Figure S20. NBO donor-acceptor interaction orbital pairs in Ph_2Te_2 for α -like isomer along with stabilization energies. Number of similar interactions is given in parentheses.

Figure S21. NBO donor-acceptor interaction orbital pairs in Ph_2Te_2 for β -like isomer along with stabilization energies. Number of similar interactions is given in parentheses.

Table S7. SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS for optimized isomer $\alpha_v Te_2Ph_2$

E(2) E(NL) - E(L) F(L, NL)Donor (L) NBO Acceptor (NL) NBO kcal/mol a.u. a.u. _____ within unit 1 59. LP (1)Te 11 96. BD*(1) C 1- C 13 0.83 1.04 0.026 113. BD*(1) C 13- C 14 59. LP (1)Te 11 1.45 1.04 0.035 60. LP (2)Te 11 95. BD*(1) C 1- C 3 0.51 0.76 0.018 60. LP (2)Te 11 96. BD*(1) C 1- C 13 3.77 0.75 0.047 60. LP (2)Te 11 112. BD*(1)Te 12- C 20 4.37 0.30 0.032 60. LP (2)Te 11 113. BD*(1) C 13- C 14 3.06 0.75 0.043 60. LP (2)Te 11 122. BD*(2) C 20- C 23 0.70 0.24 0.012 330. RY (1)Te 12 60. LP (2)Te 11 1.00 0.83 0.026 1.04 61. LP (1)Te 12 120. BD*(1) C 20- C 21 0.035 1.46 61. LP (1)Te 12 0.82 1.04 121. BD*(1) C 20- C 23 0.026 62. LP (2)Te 12 97. BD*(2) C 1- C 13 0.70 0.24 0.012 104. BD*(1) C 5- C 23 62. LP (2)Te 12 0.51 0.76 0.018 111. BD*(1)Te 11- C 13 62. LP (2)Te 12 4.37 0.30 0.032 120. BD*(1) C 20- C 21 0.75 62. LP (2)Te 12 3.05 0.043 62. LP (2)Te 12 121. BD*(1) C 20- C 23 3.78 0.75 0.047 62. LP (2)Te 12 285. RY (1)Te 11 1.00 0.83 0.026 64. BD (1) C 1- C 3 111. BD*(1)Te 11- C 13 4.22 0.69 0.048 66. BD (2) C 1- C 13 110. BD*(1)Te 11-Te 12 3.41 0.25 0.026 66. BD (2) C 1- C 13 285. RY (1)Te 11 0.72 0.88 0.022 73. BD (1) C 5- C 23 112. BD*(1)Te 12- C 20 4.22 0.69 0.048 77. BD (1) C 9- C 21 112. BD*(1)Te 12- C 20 4.27 0.69 0.048 97. BD*(2) C 1- C 13 79. BD (1)Te 11-Te 12 0.40 3.04 0.031 122. BD*(2) C 20- C 23 79. BD (1)Te 11-Te 12 3.04 0.40 0.031 79. BD (1)Te 11-Te 12 377. RY (3) C 13 0.55 1.39 0.025 500. RY (3) C 20 0.55 1.39 79. BD (1)Te 11-Te 12 0.025 80. BD (1)Te 11- C 13 94. BD*(1) C 1- H 2 0.99 0.86 0.026 95. BD*(1) C 1- C 3 80. BD (1)Te 11- C 13 5.06 0.98 0.063 114. BD*(1) C 14- H 15 80. BD (1)Te 11- C 13 0.97 0.85 0.026 80. BD (1)Te 11- C 13 115. BD*(1) C 14- C 16 4.85 0.98 0.062 80. BD (1)Te 11- C 13 125. RY (1) C 1 1.68 1.79 0.049 80. BD (1)Te 11- C 13 402. RY (1) C 14 1.64 1.78 0.048 81. BD (1)Te 12- C 20 104. BD*(1) C 5- C 23 5.05 0.98 0.063 81. BD (1)Te 12- C 20 108. BD*(1) C 9- C 21 4.85 0.98 0.062

123. BD*(1) C 21- H 22

124. BD*(1) C 23- H 24

110. BD*(1)Te 11-Te 12

525. RY (1) C 21

557. RY (1) C 23

330. RY (1)Te 12

84. BD (1) C 14- C 16 111. BD*(1)Te 11- C 13

0.98

0.99

1.64

1.68

3.42

4.27 0.69

0.85

1.78

0.86

1.79

0.25

0.72 0.88 0.022

0.026

0.026

0.048

0.049

0.048

0.026

Threshold for printing: 0.50 kcal/mol

81. BD (1)Te 12- C 20

91. BD (2) C 20- C 23

91. BD (2) C 20- C 23

Table S8. SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

For optimized isomer $\beta_v Te_2Ph_2$

Threshold for printing:	0.50 kcal/mol		
		E(2) E(NL)-E(L) F(L,NL)
Donor (L) NBO	Acceptor (NL) NBO	kcal/mol	a.u. a.u.
vithin unit 1			
59. LP (1)Te 11	96. BD*(1) C 1- C 13	2.40	1.05 0.045
60. LP (2)Te 11	97. BD*(2) C 1- C 13	10.06	0.25 0.045
60. LP (2)Te 11	112. BD*(1)Te 12- C 20	5.89	0.29 0.037
60. LP (2)Te 11	124. BD*(1) C 23- H 24	0.98	0.64 0.022
60. LP (2)Te 11	330. RY (1)Te 12	0.87	0.93 0.025
61. LP (1)Te 12	121. BD*(1) C 20- C 23	2.40	1.05 0.045
62. LP (2)Te 12	94. BD*(1) C 1- H 2	0.98	0.64 0.022
62. LP (2)Te 12	111. BD*(1)Te 11- C 13	5.89	0.29 0.037
62. LP (2)Te 12	122. BD*(2) C 20- C 23	10.06	0.25 0.045
62. LP (2)Te 12	285. RY (1)Te 11	0.87	0.93 0.025
64. BD (1) C 1- C 3	111. BD*(1)Te 11- C 13	4.54	0.67 0.049
66. BD (2) C 1- C 13	286. RY (2)Te 11	1.03	0.74 0.025
73. BD (1) C 5- C 23	112. BD*(1)Te 12- C 20	4.54	0.67 0.049
77. BD (1) C 9- C 21	112. BD*(1)Te 12- C 20	4.37	0.68 0.049
79. BD (1)Te 11-Te 12	111. BD*(1)Te 11- C 13	0.66	0.47 0.016
79. BD (1)Te 11-Te 12	112. BD*(1)Te 12- C 20	0.66	0.47 0.016
79. BD (1)Te 11-Te 12	113. BD*(1) C 13- C 14	1.70	0.93 0.035
79. BD (1)Te 11-Te 12	120. BD*(1) C 20- C 21	1.70	0.93 0.035
80. BD (1)Te 11- C 13	94. BD*(1) C 1- H 2	0.95	0.86 0.026
80. BD (1)Te 11- C 13	95. BD*(1) C 1- C 3	4.87	0.99 0.062
80. BD (1)Te 11- C 13	110. BD*(1)Te 11-Te 12	0.56	0.43 0.014
80. BD (1)Te 11- C 13	114. BD*(1) C 14- H 15	1.05	0.85 0.027
80. BD (1)Te 11- C 13	115. BD*(1) C 14- C 16	4.87	0.99 0.062
80. BD (1)Te 11- C 13	125. RY (1) C 1	1.11	1.96 0.042
80. BD (1)Te 11- C 13	402. RY (1) C 14	1.58	1.80 0.048
81. BD (1)Te 12- C 20	104. BD*(1) C 5- C 23	4.87	0.99 0.062
81. BD (1)Te 12- C 20	108. BD*(1) C 9- C 21	4.87	0.99 0.062
81. BD (1)Te 12- C 20	110. BD*(1)Te 11-Te 12	0.56	0.43 0.014
81. BD (1)Te 12- C 20	123. BD*(1) C 21- H 22	1.05	0.85 0.027
81. BD (1)Te 12- C 20	124. BD*(1) C 23- H 24	0.95	0.86 0.026
81. BD (1)Te 12- C 20	525. RY (1) C 21	1.58	1.80 0.048
81. BD (1)Te 12- C 20	557. RY (1) C 23	1.11	1.96 0.042
84. BD (1) C 14- C 16	111. BD*(1)Te 11- C 13	4.37	0.68 0.049
91. BD (2) C 20- C 23	331. RY (2)Te 12	1.03	0.74 0.025

Table S9. SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

for 1α XRD geometry

Threshold for printing:	0.50 kcal/mol	E(2) E(1	JT.) – E. (T.) – F. (T., NT.
Donor (L) NBO	Acceptor (NL) NBO	kcal/mol	
	=======================================	==================	
within unit 1			
59. LP (1)Te 11	97. BD*(1) C 1- C 13	0.83	1.05 0.026
59. LP (1)Te 11	112. BD*(1) C 13- C 14	1.45	1.05 0.035
60. LP (2)Te 11	97. BD*(1) C 1- C 13	3.78	0.76 0.048
60. LP (2)Te 11	111. BD*(1)Te 12- C 20	4.52	0.30 0.033
60. LP (2)Te 11	112. BD*(1) C 13- C 14	3.10	0.77 0.044
60. LP (2)Te 11	115. BD*(1) C 14- C 16	0.50	0.76 0.017
60. LP (2)Te 11	330. RY (1)Te 12	1.00	0.84 0.026
61. LP (1)Te 12	120. BD*(1) C 20- C 21	1.76	1.05 0.038
61. LP (1)Te 12	122. BD*(1) C 20- C 23	0.60	1.05 0.022
62. LP (2)Te 12	110. BD*(1)Te 11- C 13	4.98	0.30 0.035
62. LP (2)Te 12	120. BD*(1) C 20- C 21	2.55	0.76 0.039
62. LP (2)Te 12	121. BD*(2) C 20- C 21	0.98	0.25 0.014
62. LP (2)Te 12	122. BD*(1) C 20- C 23	3.68	0.77 0.048
62. LP (2)Te 12	285. RY (1)Te 11	1.02	0.86 0.026
64. BD (1) C 1- C 3	110. BD*(1)Te 11- C 13	4.22	0.70 0.048
71. BD (1) C 5- C 23	111. BD*(1)Te 12- C 20	4.52	0.69 0.050
77.BD (1) C 9-C 21	111. BD*(1)Te 12- C 20	4.30	0.69 0.049
78. BD (1)Te 11-Te 12	113. BD*(2) C 13- C 14	2.78	0.41 0.030
78. BD (1)Te 11-Te 12	121. BD*(2) C 20- C 21	2.75	0.41 0.030
79. BD (1)Te 11- C 13	94. BD*(1) C 1- H 2	0.99	0.86 0.026
79. BD (1)Te 11- C 13	95. BD*(1) C 1- C 3	4.84	1.01 0.062
79. BD (1)Te 11- C 13	114. BD*(1) C 14- H 15	0.99	0.86 0.026
79. BD (1)Te 11- C 13	115. BD*(1) C 14- C 16	4.96	0.99 0.063
79. BD (1)Te 11- C 13	125. RY (1) C 1	1.62	1.80 0.048
79. BD (1)Te 11- C 13	402. RY (1) C 14	1.64	1.79 0.048
80. BD (1)Te 12- C 20	102. BD*(1) C 5- C 23	4.86	1.00 0.062
80. BD (1)Te 12- C 20	108. BD*(1) C 9- C 21	5.02	1.00 0.063
80. BD (1)Te 12- C 20	123. BD*(1) C 21- H 22	1.01	0.86 0.026
80. BD (1)Te 12- C 20	124. BD*(1) C 23- H 24	1.04	0.85 0.027
80. BD (1)Te 12- C 20	525. RY (1) C 21	1.58	1.79 0.047
80. BD (1)Te 12- C 20	557. RY (1) C 23	1.63	1.79 0.048
82. BD (2) C 13- C 14	109. BD*(1)Te 11-Te 12	3.61	0.25 0.027
82. BD (2) C 13- C 14	285. RY (1)Te 11	0.73	0.90 0.023
84. BD (1) C 14- C 16	110. BD*(1)Te 11- C 13	4.40	0.69 0.049
90. BD (2) C 20- C 21	109. BD*(1)Te 11-Te 12	2.74	0.25 0.023
90. BD (2) C 20- C 21	330. RY (1)Te 12	0.70	0.89 0.022

Table S10. SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

for 1β XRD geometry

Threshold for printing:	0.50 kcal/mol		
		E(2) E(NL)-E(L) F(L,NL)
Donor (L) NBO	Acceptor (NL) NBO	kcal/mol a.u.	a.u.
within unit 1			
59. LP (1)Te 11	96. BD*(1) C 1- C 13	2.53 1.07	0.046
60. LP (2)Te 11	97. BD*(2) C 1- C 13	10.77 0.26	0.047
60. LP (2)Te 11	112. BD*(1)Te 12- C 20	5.77 0.30	0.037
60. LP (2)Te 11	124. BD*(1) C 23- H 24	1.54 0.63	0.028
60. LP (2)Te 11	330. RY (1)Te 12	0.86 0.95	0.025
61. LP (1)Te 12	121. BD*(1) C 20- C 23	2.53 1.07	0.046
62. LP (2)Te 12	94. BD*(1) C 1- H 2	1.54 0.63	0.028
62. LP (2)Te 12	111. BD*(1)Te 11- C 13	5.77 0.30	0.037
62. LP (2)Te 12	122. BD*(2) C 20- C 23	10.77 0.26	0.047
62. LP (2)Te 12	285. RY (1)Te 11	0.86 0.95	0.025
64. BD (1) C 1- C 3	111. BD*(1)Te 11- C 13	4.63 0.68	0.050
66. BD (2) C 1- C 13	286. RY (2)Te 11	1.10 0.75	0.026
73. BD (1) C 5- C 23	112. BD*(1)Te 12- C 20	4.64 0.68	0.050
77. BD (1) C 9- C 21	112. BD*(1)Te 12- C 20	4.52 0.68	0.050
79. BD (1)Te 11-Te 12	111. BD*(1)Te 11- C 13	0.69 0.47	0.016
79. BD (1)Te 11-Te 12	112. BD*(1)Te 12- C 20	0.69 0.47	0.016
79. BD (1)Te 11-Te 12	113. BD*(1) C 13- C 14	1.81 0.94	0.037
79. BD (1)Te 11-Te 12	120. BD*(1) C 20- C 21	1.81 0.94	0.037
80. BD (1)Te 11- C 13	94. BD*(1) C 1- H 2	0.97 0.86	0.026
80. BD (1)Te 11- C 13	95. BD*(1) C 1- C 3	4.81 1.01	0.062
80. BD (1)Te 11- C 13	110. BD*(1)Te 11-Te 12	0.56 0.43	0.014
80. BD (1)Te 11- C 13	114. BD*(1) C 14- H 15	1.06 0.85	0.027
80. BD (1)Te 11- C 13	115. BD*(1) C 14- C 16	4.86 1.00	0.062
80. BD (1)Te 11- C 13	125. RY (1) C 1	1.13 1.96	0.042
80. BD (1)Te 11- C 13	402. RY (1) C 14	1.61 1.82	0.048
81. BD (1)Te 12- C 20	104. BD*(1) C 5- C 23	4.81 1.01	0.062
81. BD (1)Te 12- C 20	108. BD*(1) C 9- C 21	4.86 1.00	0.062
81. BD (1)Te 12- C 20	110. BD*(1)Te 11-Te 12	0.56 0.43	0.014
81. BD (1)Te 12- C 20	123. BD*(1) C 21- H 22	1.06 0.85	0.027
81. BD (1)Te 12- C 20	124. BD*(1) C 23- H 24	0.97 0.86	0.026
81. BD (1)Te 12- C 20	525. RY (1) C 21	1.61 1.82	0.048
81. BD (1)Te 12- C 20	557. RY (1) C 23	1.13 1.96	0.042
84. BD (1) C 14- C 16	111. BD*(1)Te 11- C 13	4.52 0.68	0.050
91. BD (2) C 20- C 23	331. RY (2)Te 12	1.10 0.75	0.026

Bonding interactions in a dimer	Symmetry operation for a dimer	Pairwise energy $E_{AA'}$ (kcal·mol ⁻¹)
	SEasSE, native polymorph	
$S_{2} = S_{2} + CH$ $S_{2} + stacking$	x-1t; y; z;	-3.5
	x+1t; y; z;	-3.5
CII ei	-x-1t; y+0.5-1t; -z+0.5-1t;	-2.6
Спрі	-x-1t; y+0.5; -z+0.5-1t;	-2.6
CII ei	-x; y+0.5-1t; -z+0.5-1t;	-2.3
Спрі	-x; y+0.5; -z+0.5-1t;	-2.3
Se Se	x+0.5-1t; -y+0.5; -z-1t;	-1.8
SeSe	x+0.5; -y+0.5; -z-1t;	-1.8
CII	x+0.5-1t; -y+0.5-1t; -z-1t;	-1.6
Спрі	x+0.5; -y+0.5-1t; -z-1t;	-1.6
	x; y-1t; z;	-1.6
CHpl + CHSe	x; y+1t; z;	-1.6
	x-1t; y-1t; z;	-1.2
Cnse + Cnpi	x+1t; y+1t; z;	-1.2
Sum of $E_{AA'}$		-29.2

Table S11. Pair wise interaction energy contributions $(E_{AA'} = 0.5^*(E_{dimer} - E_A - E_{A'}))$ into lattice energies E_{latt} of native and putative polymorphs of Ph₂E₂ crystals. The sums of $E_{AA'}$ values are estimations of the E_{latt} values.

SEasTE, putative polymorph			
	x-1t; y; z;	-3.5	
Se Se + CH Se + stack	x+1t; y; z;	-3.5	
	-x; y+0.5-1t; -z+0.5;	-2.6	
Спрі + Спзе	-x; y+0.5; -z+0.5;	-2.6	
CIL:	-x-1t; y+0.5-1t; -z+0.5;	-1.9	
Снрі	-x-1t; y+0.5; -z+0.5;	-1.9	
	x; y-1t; z;	-1.7	
Спрі + Спse	x; y+1t; z;	-1.7	
	x+0.5-1t; -y+0.5; -z;	-1.7	
SeSe + CHSe	x+0.5; -y+0.5; -z;	-1.7	
	x-1t; y+1t; z;	-1.3	
нн + снse	x+1t; y-1t; z;	-1.3	
CIL	x+0.5-1t; -y+0.5+1t; -z;	-1.2	
Снрі	x+0.5; -y+0.5+1t; -z;	-1.2	
Sum of $E_{AA'}$		-27.5	

TEasSE, putative polymorph					
To To CIL To Latophing	x-1t; y; z;	-4.0			
	x+1t; y; z;	-4.0			
	x+0.5-1t; -y+0.5; -z-1t;	-3.0			
1e1e + Сп1e	x+0.5; -y+0.5; -z-1t;	-3.0			
CII ai	-x-1t; y+0.5-1t; -z+0.5-1t;	-2.7			
Спрі	-x-1t; y+0.5; -z+0.5-1t;	-2.7			
	-x; y+0.5-1t; -z+0.5-1t;	-2.5			
CH1e + CHpl	-x; y+0.5; -z+0.5-1t;	-2.5			

CII T.	x; y-1t; z;	-1.9	
Сп 1е	x; y+1t; z;	-1.9	
CII. mi	x+0.5-1t; -y+0.5-1t; -z-1t;	-1.6	
Спрі	x+0.5; -y+0.5-1t; -z-1t;	-1.6	
	x-1t; y-1t; z;	-1.1	
Сп 1е	x+1t; y+1t; z;	-1.1	
Sum of $E_{AA'}$		-33.5	

TEasTE, native polymorph						
To To CII To Lateral	x-1t; y; z;	-5.0				
	x+1t; y; z;	-5.0				
	x+0.5-1t; -y+0.5; -z;	-2.7				
1е1е + Сп1е	x+0.5; -y+0.5; -z;	-2.7				
$CU T_2 + CU r^2$	-x; y+0.5-1t; -z+0.5;	-2.6				
Сп 1е + Спрі	-x; y+0.5; -z+0.5;	-2.6				
staalring To ni	x; y-1t; z;	-2.0				
stacking + Tepi	x; y+1t; z;	-2.0				
	-x-1t; y+0.5-1t; -z+0.5;	-1.8				
нп + снрі	-x-1t; y+0.5; -z+0.5;	-1.8				
	x-1t; y+1t; z;	-1.3				
Сп1е + пп	x+1t; y-1t; z;	-1.3				
	x+0.5-1t; -y+0.5+1t; -z;	-1.0				
Спрі + пп	x+0.5; -y+0.5+1t; -z;	-1.0				
Sum of $E_{AA'}$		-32.8				

Table S12. SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS for optimized isomer α_v Se₂Ph₂

Threshold for printing: 0.50 kcal/mol

		E(2) E(1	NL)-E(L) F(L,N]])
Donor (L) NBO	Acceptor (NL) NBO	kcal/mol	a.u. a.u.	
within unit 1				=
41. LP (1)Se 11	78. BD*(1) C 1- C 13	0.84	1.08 0.027	
41. LP (1)Se 11	95. BD*(1) C 13- C 14	2.26	1.08 0.044	
42. LP (2)Se 11	77. BD*(1) C 1- C 3	0.58	0.78 0.019	
42. LP (2)Se 11	78. BD*(1) C 1- C 13	4.95	0.76 0.055	
42. LP (2)Se 11	94. BD*(1)Se 12- C 20	4.27	0.37 0.035	
42. LP (2)Se 11	95. BD*(1) C 13- C 14	3.48	0.77 0.046	
42. LP (2)Se 11	97. BD*(1) C 14- C 16	0.51	0.78 0.018	
42. LP (2)Se 11	104. BD*(2) C 20- C 23	1.12	0.26 0.015	
42. LP (2)Se 11	310. RY (1)Se 12	1.47	1.05 0.035	
43. LP (1)Se 12	102. BD*(1) C 20- C 21	2.26	1.08 0.044	
43. LP (1)Se 12	103. BD*(1) C 20- C 23	0.84	1.08 0.027	
44. LP (2)Se 12	79. BD*(2) C 1- C 13	1.12	0.26 0.015	
44. LP (2)Se 12	86. BD*(1) C 5- C 23	0.58	0.78 0.019	
44. LP (2)Se 12	90. BD*(1) C 9- C 21	0.51	0.78 0.018	
44. LP (2)Se 12	93. BD*(1)Se 11- C 13	4.27	0.37 0.035	
44. LP (2)Se 12	102. BD*(1) C 20- C 21	3.48	0.77 0.046	
44. LP (2)Se 12	103. BD*(1) C 20- C 23	4.95	0.76 0.055	

44.	LP	(2):	Se	12			267.	RY	(1)	Se	11			1	.47	1	.05	0.035
46.	BD	(1)	С	1-	С	3	93.	BD*	(1);	Se	11-	С	13	4	.21	0	.74	0.050
48.	BD	(2)	С	1-	С	13	92.	BD*	(1);	Se	11-8	Se	12	4	.66	0	.28	0.032
48.	BD	(2)	С	1-	С	13	267.	RY	(1)	Se	11			1	.05	1	.08	0.030
55.	BD	(1)	С	5-	С	23	94.	BD*	(1)	Se	12-	С	20	4	.21	0	.74	0.050
59.	BD	(1)	С	9-	С	21	94.	BD*	(1)	Se	12-	С	20	4	.26	0	.74	0.050
61.	BD	(1):	Se	11-9	Se	12	79.	BD*	(2)	С	1-	С	13	3	. 90	0	.44	0.037
61.	BD	(1):	Se	11-9	Se	12	104.	BD*	(2)	С	20-	С	23	3	. 90	0	.44	0.037
61.	BD	(1):	Se	11-5	Se	12	355.	RY	(3)	С	13			0	.65	1	.38	0.027
61.	BD	(1):	Se	11-5	Se	12	356.	RY	(4)	С	13			0	.60	2	.39	0.034
61.	BD	(1):	Se	11-5	Se	12	478.	RY	(3)	С	20			0	.65	1	.38	0.027
61.	BD	(1):	Se	11-5	Se	12	479.	RY	(4)	С	20			0	.60	2	.39	0.034
62.	BD	(1):	Se	11-	С	13	76.	BD*	(1)	С	1-	Η	2	0	.75	0	.92	0.023
62.	BD	(1):	Se	11-	С	13	77.	BD*	(1)	С	1-	С	3	4	.04	1	.04	0.058
62.	BD	(1):	Se	11-	С	13	96.	BD*	(1)	С	14-	Η	15	0	.73	0	.91	0.023
62.	BD	(1):	Se	11-	С	13	97.	BD*	(1)	С	14-	С	16	3	.85	1	.04	0.057
62.	BD	(1):	Se	11-	С	13	107.	RY	(1)	С	1			1	.60	1	.94	0.050
62.	BD	(1):	Se	11-	С	13	311.	RY	(2)	Se	12			0	.52	1	.49	0.025
62.	BD	(1):	Se	11-	С	13	380.	RY	(1)	С	14			1	.51	1	.96	0.049
63.	BD	(1):	Se	12-	С	20	86.	BD*	(1)	С	5-	С	23	4	.04	1	.04	0.058
63.	BD	(1):	Se	12-	С	20	90.	BD*	(1)	С	9-	С	21	3	.85	1	.04	0.057
63.	BD	(1):	Se	12-	С	20	105.	BD*	(1)	С	21-	Η	22	0	.73	0	.91	0.023
63.	BD	(1):	Se	12-	С	20	106.	BD*	(1)	С	23-	Η	24	0	.75	0	.92	0.023
63.	BD	(1):	Se	12-	С	20	268.	RY	(2)	Se	11			0	.52	1	.49	0.025
63.	BD	(1):	Se	12-	С	20	503.	RY	(1)	С	21			1	.51	1	.96	0.049
63.	BD	(1):	Se	12-	С	20	535.	RY	(1)	С	23			1	.60	1	.94	0.050
66.	BD	(1)	С	14-	С	16	93.	BD*	(1);	Se	11-	С	13	4	.26	0	.74	0.050
73.	BD	(2)	С	20-	С	23	92.	BD*	(1)	Se	11-8	Se	12	4	. 66	0	.28	0.032
73.	BD	(2)	С	20-	С	23	310.	RY	(1)	Se	12			1	.05	1	.08	0.030

Table S13. SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS for optimized isomer β_v Se_2Ph_2

Threshold for printing:	0.50 kcal/mol		TP (T NT)
			с (ц , Nц)
Donor (L) NBO	Acceptor (NL) NBO	kcal/mol a.u.	a.u. =======
41. LP (1)Se 22	93. BD*(1) C 12- C 21	3.32 1.10	0.054
41. LP (1)Se 22	521. BY (3)Se 23	0.52 1.68	0.026
42. LP (2)Se 22	85. BD*(1) C 6- C 8	0.58 0.77	0.019
42. LP (2)Se 22	89. BD*(1) C 8-Se 23	6.07 0.36	0.042
42. LP (2)Se 22	90. BD*(1) C 9- H 10	0.88 0.66	0.021
42. LP (2)Se 22	94. BD*(2) C 12- C 21	14.21 0.27	0.055
42. LP (2)Se 22	519. RY (1)Se 23	1.71 1.17	0.040
43. LP (1)Se 23	87. BD*(1) C 8- C 9	3.32 1.10	0.054
43. LP (1)Se 23	478. RY (3)Se 22	0.52 1.68	0.026
44. LP (2)Se 23	88.BD*(2)C 8-C 9	14.18 0.27	0.055
44. LP (2)Se 23	91. BD*(1) H 11- C 12	0.89 0.66	0.022
44. LP (2)Se 23	104. BD*(1) C 19- C 21	0.58 0.77	0.019
44. LP (2)Se 23	105. BD*(1) C 21-Se 22	6.07 0.36	0.042
44. LP (2)Se 23	476. RY (1)Se 22	1.71 1.17	0.040
50.BD (1) C 3-C 9	89. BD*(1) C 8-Se 23	4.61 0.73	0.052
51. BD (1) C 5- C 6	89. BD*(1) C 8-Se 23	4.25 0.73	0.050
54.BD (1) C 6- C 8	106. BD*(1)Se 22-Se 23	0.63 0.64	0.018
57.BD (2) C 8- C 9	520. RY (2)Se 23	1.65 0.90	0.034
58. BD (1) C 8-Se 23	81. BD*(1) C 3- C 9	3.88 1.05	0.057
58. BD (1) C 8-Se 23	82. BD*(1) C 5- C 6	3.92 1.05	0.057
58. BD (1) C 8-Se 23	86. BD*(1) C 6- H 24	0.80 0.90	0.024
58. BD (1) C 8-Se 23	90. BD*(1) C 9- H 10	0.73 0.92	0.023
58. BD (1) C 8-Se 23	106. BD*(1)Se 22-Se 23	0.70 0.53	0.017
58. BD (1) C 8-Se 23	198. RY (1) C 6	1.51 1.96	0.049
58. BD (1) C 8-Se 23	257. RY (1) C 9	1.00 2.11	0.041
58. BD (1) C 8-Se 23	478. RY (3)Se 22	0.80 1.62	0.032
59. BD (1) C 9- H 10	89. BD*(1) C 8-Se 23	0.53 0.61	0.016
60. BD (1) H 11- C 12	105. BD*(1) C 21-Se 22	0.53 0.61	0.016
61. BD (1) C 12- C 13	105. BD*(1) C 21-Se 22	4.61 0.73	0.052
63. BD (2) C 12- C 21	477. RY (2)Se 22	1.65 0.90	0.034
70. BD (1) C 17- C 19	105. BD*(1) C 21-Se 22	4.25 0.73	0.050
73. BD (1) C 19- C 21	106. BD*(1)Se 22-Se 23	0.64 0.64	0.018
74. BD (1) C 21-Se 22	91. BD*(1) H 11- C 12	0.73 0.92	0.023
74. BD (1) C 21-Se 22	92. BD*(1) C 12- C 13	3.88 1.05	0.057
74. BD (1) C 21-Se 22	IVI. $BD*(1) \subset 17 - C 19$	3.92 1.05	0.057
74. PD (1) C 21-Se 22	106 PD*(1) C 19- H 20	0.80 0.90	0.024
77. BD (1) C 21-38 22	204 py (1) = 12	$\begin{array}{cccc} 0.7 \pm & 0.53 \\ 0.00 & 2.11 \end{array}$	0.011
74 BD (1) C 21-50 22	$2 J_{7}$, Λ_{1} (1) C 12 417 RY (1) C 10	1.52 1.0 <i>6</i>	0 0/0
	π_{1} , π_{1} (\pm) C \pm 521 RY (3) C 23	1.JZ 1.90 0.80 1.62	0.049
74 BD (1) C 21-SC 22	26T. VI (2196 53	0.00 1.02	0.032
74. BD (1) C 21-SC 22 75. BD (1) C 21-SC 22	85 BD*(1) C 6- C 9	7 18 11 47	
74. BD (1) C 21-Se 22 75. BD (1)Se 22-Se 23 75. BD (1)Se 22-Se 23	85. BD*(1) C 6- C 8	2.18 0.97	0.019
74. BD (1) C 21-Se 22 75. BD (1)Se 22-Se 23 75. BD (1)Se 22-Se 23 75. BD (1)Se 22-Se 23	85. BD*(1) C 6- C 8 89. BD*(1) C 8-Se 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.018
74. BD (1) C 21-Se 22 75. BD (1)Se 22-Se 23 75. BD (1)Se 22-Se 23	85. BD*(1) C 6- C 8 89. BD*(1) C 8-Se 23 104. BD*(1) C 19- C 21 105. BD*(1) C 21-Se 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.011
74. BD (1) C 21-Se 22 75. BD (1)Se 22-Se 23 75. BD (1)Se 22-Se 23	85. BD*(1) C 6- C 8 89. BD*(1) C 8-Se 23 104. BD*(1) C 19- C 21 105. BD*(1) C 21-Se 22 233 BY (4) C 8	2.18 0.97 0.75 0.57 2.19 0.97 0.75 0.57 0.60 2.20	0.018 0.041 0.019 0.032

Table S14. Selected NBOs composition and population (bonding/antibonding) in isomers of Se_2Ph_2 and Te_2Ph_2 in vacuo.

Ph2Se2 α_v

61. (1.95403) BD (1)Se 11-Se 12 (50.00%) 0.7071*Se 11 s(5.78%)p16.19(93.61%)d 0.10(0.56%) f 0.01(0.05%) 0.7071*Se 12 s(5.78%)p16.19(93.61%)d 0.10(0.56%) (50.00%) f 0.01(0.05%) 62. (1.97530) BD (1)Se 11- C 13 (44.91%) 0.6701*Se 11 s(12.46%)p 7.00(87.19%)d 0.03(0.34%) f 0.00(0.02%) 0.7422* C 13 s(24.91%)p 3.00(74.84%)d 0.01(0.20%) (55.09%) f 0.00(0.06%) 63. (1.97530) BD (1)Se 12- C 20 (44.91%) 0.6701*Se 12 s(12.46%)p 7.00(87.19%)d 0.03(0.34%) f 0.00(0.02%) 0.7422* C 20 s(24.91%)p 3.00(74.84%)d 0.01(0.20%) (55.09%) f 0.00(0.06%)

Ph2Se2 β_v

75. (1.97601) BD (1)Se 22-Se 23 (50.00%) 0.7071*Se 22 s(7.08%)p13.03(92.30%)d 0.08(0.56%) f 0.01(0.06%) (50.00%) 0.7071*Se 23 s(7.08%)p13.04(92.30%)d 0.08(0.56%) f 0.01(0.06%) 74. (1.97530) BD (1) C 21-Se 22 (54.03%) 0.7350* C 21 s(23.96%)p 3.16(75.77%)d 0.01(0.21%) f 0.00(0.06%) (45.97%) 0.6780*Se 22 s(12.80%)p 6.79(86.86%)d 0.03(0.33%) f 0.00(0.02%) 58. (1.97532) BD (1) C 8-Se 23 (54.02%) 0.7350* C 8 s(23.96%)p 3.16(75.77%)d 0.01(0.21%) f 0.00(0.06%) (45.98%) 0.6781*Se 23 s(12.80%)p 6.79(86.86%)d 0.03(0.33%) f 0.00(0.02%)

Ph2Te2 α_v

79.	(1.95869) BD (1)Te	11-Te 12							
	(50.00%)	0.7071*Te	11 s	s (5.62%)pi	16.70(93.79%)d	0.11(0.60%)
	(50.00%)	0.7071*Te	12 s	s (5.62%)p1	16.70(93.79%)d	0.11(0.60%)
80.	(1.96845) BD (1)Te	11- C 13							
	(39.76%)	0.6306*Te	11 s	s (10.19%)p	8.79(89.54%)d	0.03(0.27%)
	(60.24%)	0.7761* C	13 s	s (24.51%)p	3.07(75.30%)d	0.01(0.16%)
					f	0.00(0.03%)		
81.	(1.96845) BD (1)Te	12- C 20							
	(39.76%)	0.6306*Te	12 s	s (10.19%)p	8.79(89.54%)d	0.03(0.27%)
	(60.24%)	0.7761* C	20 s	s (24.51%)p	3.07(75.30%)d	0.01(0.16%)
					f	0.00(0.03%)		

Ph2Te2 β_v

79. (1.97566) BD (1) Te 11-Te 12 (50.00%) 0.7071*Te 11 s(6.64%)p13.97(92.75%)d 0.09(0.61%) (50.00%) 0.7071*Te 12 s(6.64%)p13.97(92.75%)d 0.09(0.61%) 80. (1.96887) BD (1) Te 11- C 13 (40.76%) 0.6385*Te 11 s(10.48%)p 8.52(89.24%)d 0.03(0.28%) (59.24%) 0.7697* C 13 s(23.68%)p 3.21(76.11%)d 0.01(0.18%) f 0.00(0.03%)
81. (1.96887) BD (1) Te 12- C 20 (40.76%) 0.6385*Te 12 s(10.48%)p 8.51(89.24%)d 0.03(0.28%) (59.24%) 0.7697* C 20 s(23.68%)p 3.21(76.11%)d 0.01(0.18%) f 0.00(0.03%)

QTAIM atomic connectivity graphs for dimers from the native polymorph of Ph2Se2 (in the order of decreasing of absolute value of pairwise interaction energy).

Figure 23

QTAIM atomic connectivity graphs for dimers from the putative polymorph of Ph2Se2 (in the order of decreasing of absolute value of pairwise interaction energy).

QTAIM atomic connectivity graphs for dimers from the putative polymorph of Ph2Te2 (in the order of decreasing of absolute value of pairwise interaction energy).

Figure 25

QTAIM atomic connectivity graphs for dimers from the native polymorph of Ph2Te2 (in the order of decreasing of absolute value of pairwise interaction energy).

Figure S26 Micro photo of the acicular crystals of 1α showing crystal faces and axis indexing. $P2_1/n$

cell_length_a	13.2557(10)
cell_length_b	5.3985(4)
cell_length_c	23.3604(18)
cell_angle_beta	103.761(1)

Figure S27 Micro photo of the acicular crystals of 1γ showing crystal faces and axis indexing. C2/c

cell_length_a	6.8200(4)
cell_length_b	8.6628(5)
cell_length_c	33.6106(19)
cell_angle_beta	92.684(2)