Electronic Supplementary Information (ESI)

Multi-responsive luminescent sensor based on a stable Eu(III) metal-organic framework for sensing Fe^{3+} , MnO_4^{-} , and $Cr_2O_7^{2-}$ in aqueous solution

Qi-Qi He,^a Shu-Li Yao,^a Teng-Fei Zheng,^a* Hui Xu,^a Sui-Jun Liu,^a* Jing-Lin Chen,^a Na Li,^b* and He-Rui Wen^a

^aSchool of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
^bSchool of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P.R. China.

*Corresponding authors. E-mail: sjliu@jxust.edu.cn (S.-J. Liu), zhengtengfei0628@163.com (T.-F. Zheng), E-mail: lina@nankai.edu.cn (N. Li). Tel: +86-797-8312204

Eu1—O8	2.353(8)	Eu1—O1 ⁱⁱ	2.485(8)
Eu1—O4	2.392(7)	Eu1—N2	2.558(14)
Eu2—O7 ^{iv}	2.323(9)	Eu2—N3 ^v	2.450(13)
Eu2—O6 ^v	2.363(8)	Eu2—O4 ^{vi}	2.509(8)
Eu2—O9	2.377(9)	Eu2—O3 ^{vi}	2.541(9)
Eu2—O1W	2.411(9)	Eu2—O1	2.872(8)
Eu2—O2	2.444(8)		
O8—Eu1—O8 ⁱ	145.7(5)	O1 ⁱⁱ —Eu1—O1 ⁱⁱⁱ	80.5(4)
O8—Eu1—O4	94.3(3)	O8—Eu1—N2	70.3(4)
O8 ⁱ —Eu1—O4	96.7(3)	O8 ⁱ —Eu1—N2	143.8(4)
O4—Eu1—O4 ⁱ	142.2(4)	O4—Eu1—N2	69.2(4)
O8—Eu1—O1 ⁱⁱ	80.6(3)	O4 ⁱ —Eu1—N2	80.7(4)
O8 ⁱ —Eu1—O1 ⁱⁱ	73.4(3)	O1 ⁱⁱ —Eu1—N2	134.6(4)
O4—Eu1—O1 ⁱⁱ	149.0 (3)	O1 ⁱⁱⁱ —Eu1—N2	120.8(4)
O4 ⁱ —Eu1—O1 ⁱⁱ	68.8(3)	N2—Eu1—N2 ⁱ	74.6(5)
$O7^{iv}$ —Eu2— $O6^{v}$	78.1(3)	O1W—Eu2—O4 ^{vi}	127.8(3)
O7 ^{iv} —Eu2—O9	87.0(4)	O2—Eu2—O4 ^{vi}	82.0(3)
O6 ^v —Eu2—O9	73.4(4)	N3v—Eu2—O4vi	131.6(4)
O7 ^{iv} —Eu2—O1W	78.3(4)	O7 ^{iv} —Eu2—O3 ^{vi}	126.7(3)
O6 ^v —Eu2—O1W	71.1(4)	O6 ^v —Eu2—O3 ^{vi}	133.0(3)
O9—Eu2—O1W	143.9(4)	O9—Eu2—O3 ^{vi}	69.7(4)
O7 ^{iv} —Eu2—O2	124.1(3)	O1W—Eu2—O3 ^{vi}	143.9(4)
O6 ^v —Eu2—O2	133.3(3)	O2—Eu2—O3 ^{vi}	70.2(3)
O9—Eu2—O2	139.2(4)	N3 ^v —Eu2—O3 ^{vi}	80.1(4)
O1W—Eu2—O2	74.2(4)	$O4^{vi}$ —Eu2— $O3^{vi}$	51.7(3)
$O7^{iv}$ —Eu2—N3 ^v	148.1(4)	O7 ^{iv} —Eu2—O1	76.5(3)
O6 ^v —Eu2—N3 ^v	70.2(4)	O6 ^v —Eu2—O1	135.7(3)
O9—Eu2—N3 ^v	87.7(5)	O9—Eu2—O1	139.7(3)
O1W—Eu2—N3 ^v	87.8(5)	O1W—Eu2—O1	68.3(3)
O2—Eu2—N3 ^v	78.0(4)	O2—Eu2—O1	48.3(3)
$O7^{iv}$ —Eu2—O4 vi	78.0(3)	N3 ^v —Eu2—O1	124.7(4)
$O6^v$ —Eu2— $O4^{vi}$	144.6(3)	O4 ^{vi} —Eu2—O1	61.2(2)
O9—Eu2—O4 ^{vi}	79.6(3)	O3 ^{vi} —Eu2—O1	91.1(3)

Table S1. Selected bond lengths (Å) and angles (°) for JXUST-9.

Symmetry codes: (i) -x+1, y, -z-3/2; (ii) x+1/2, y+1/2, z; (iii) -x+1/2, y+1/2, -z-3/2; (iv) x-1/2, y-1/2, z; (v) x, -y-1, -z-1; (vi) -x+1/2, y-1/2, -z-3/2; (vii) x, -y-2, -z-1.

ions	label	shape	symmetry	$distortion(\tau)$
Eu1	OP-8	Octagon	$D_{8\mathrm{h}}$	30.854
	HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	23.235
	HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	16.015
	CU-8	Cube	$O_{ m h}$	8.617
	SAPR-8	Square antiprism	$D_{ m 4d}$	2.540
	TDD-8	Triangular dodecahedron	D_{2d}	0.509
	JGBF-8	Johnson gyrobifastigium J26	D_{2d}	13.902
	JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	30.532
	JBTPR-8	Biaugmented trigonal prism J50	$C_{2\mathrm{v}}$	2.935
	BTPR-8	Biaugmented trigonal prism	$C_{2\mathrm{v}}$	2.764
	JSD-8	Snub diphenoid J84	D_{2d}	2.574
	TT-8	Triakis tetrahedron	$T_{\rm d}$	8.981
	ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	23.188
Eu2	EP-9	Enneagon	$D_{9\mathrm{h}}$	33.061
	OPY-9	Octagonal pyramid	$C_{8\mathrm{v}}$	22.381
	HBPY-9	Heptagonal bipyramid	$D_{7\mathrm{h}}$	18.907
	JTC-9	Johnson triangular cupola J3	$C_{3\mathrm{v}}$	15.231
	JCCU-9	Capped cube J8	$C_{4\mathrm{v}}$	9.744
	CCU-9	Spherical-relaxed capped cube	$C_{4\mathrm{v}}$	8.413
	JCSAPR-9	Capped square antiprism J10	$C_{4\mathrm{v}}$	2.776
	CSAPR-9	Spherical capped square antiprism	$C_{4\mathrm{v}}$	1.501
	JTCTPR-9	Tricapped trigonal prism J51	$D_{3\mathrm{h}}$	2.978
	TCTPR-9	Spherical tricapped trigonal prism	$D_{3\mathrm{h}}$	2.834
	JTDIC-9	Tridiminished icosahedron J63	$C_{3\mathrm{v}}$	13.431
	HH-9	Hula-hoop	$C_{2\mathrm{v}}$	10.365
	MFF-9	Muffin	$C_{\rm s}$	1.173

Table S2. SHAPE analysis of the Eu^{III} ions in JXUST-9.

analytes	MOFs	solvents	detection	references	
			limits (M)		
Fe ³⁺	JXUST-9	H_2O	9.40×10^{-7}	This work	
	[Eu(L1)(H ₂ O)]·1.5H ₂ O	H_2O	8.70×10^{-7}	1	
	${[Zn_3(L2)(OH)(H_2O)_5] \cdot NMP \cdot 2H_2O}_n$	H_2O	1.41×10^{-6}	2	
	${Eu(L3)(H_2O)(DMA)}_n$	H_2O	7.70×10^{-5}	3	
	[Eu(L4)(DMF)(H ₂ O)(HCOO)] _n	DMAc	1.93×10^{-6}	4	
	$\{[Zn_2(L6)(L5)] \cdot H_2O\}_n$	H_2O	6.19×10^{-6}	5	
MnO4 ⁻	JXUST-9	H ₂ O	1.23×10^{-6}	This work	
	${[Eu_3(L7)_3(HCOO)(OH)_2(DMF)] \cdot 3DMF \cdot 2H_2O}_n$	H_2O	1.00×10^{-7}	6	
	$\{[Zn_3(L2)(OH)(H_2O)_5] \cdot NMP \cdot 2H_2O\}_n$	H_2O	$3.08 imes 10^{-4}$	2	
	[Eu(L4)(DMF)(H ₂ O)(HCOO)] _n	H_2O	1.08×10^{-5}	4	
	${Tb(L8)_{1.5}(H_2O)_{4.5}]_n}$	H_2O	3.90×10^{-7}	7	
	[Cd(L9)(L10)]·H ₂ O	H_2O	2.56×10^{-4}	8	
Cr ₂ O ₇ ²⁻	JXUST-9	H ₂ O	1.23×10^{-6}	This work	
	${[Eu_3(L7)_3(HCOO)(OH)_2(DMF)] \cdot 3DMF \cdot 2H_2O}_n$	H_2O	5.00×10^{-7}	6	
	[Eu(L1)(H ₂ O)]·1.5H ₂ O	H_2O	1.25×10^{-6}	1	
	${Eu(L3)(H_2O)(DMA)}_n$	H_2O	6.05×10^{-5}	3	
	[Eu(L4)(DMF)(H ₂ O)(HCOO)] _n	DMAc	6.06×10^{-6}	4	
	[Cd(L9)(L10)]·H ₂ O	H_2O	2.78×10^{-4}	8	
$H_{2}I_{1} = 3-(3.5-dicarboxylatobenzyloxy)$ benzoic acid:					

Table S3. Comparison of the sensitivities of JXUST-9 with previously reported MOFs to Fe³⁺, MnO₄⁻ and $Cr_2O_7^{2-}$.

 $H_3L1 = 3-(3,5-dicarboxylatobenzyloxy)$ benzoic acid;

 $H_3L2 = 3,5-(4-carboxybenzyloxy)$ benzoic acid;

 $H_5L3 = 2,4$ -di(3',5'-dicarboxylphenyl) benzoic acid;

 $H_2L4 = 4,4-(9,9-dimethyl-9H-fluorene-2,7-diyl)$ dibenzoic acid;

 $H_4L5 = 1,2,4,5$ -benzenetetracarboxylic acid;

L6 = 1,4-bis(1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazol-2-yl) methyl benzene;

 $H_2L7 = 4,40-(4,40-bipyridine-2,6-diyl)$ dibenzoic acid;

 $H_2L8 = 2,5$ -bis-(1H-1,2,4-triazol-1-yl) terephthalic acid;

L9 = N,N'-bis(4-methyl-enepyridin-4-yl)-1,4-naphthalene dicarboxamide;

 $H_2L10 = 5$ -methylisophthalic acid;

References

1.Y. F. Tao, P. Zhang, J. N. Liu, X. D. Chen, X. L. Guo, H. Q. Jin, J. Chai, L. Wang and Y. Fan, New J. Chem., 2018, 42, 19485—19493.

2. L. Z. Liu, Y. Wang, R. Y. Lin, Z. Z. Yao, Q. J. Lin, L. H. Wang, Z. J. Zhang and S. C. Xiang, Dalton Trans., 2018, 47, 16190-16196.

3. Y. T. Yan, W. Y. Zhang, F. Zhang, F. Cao, R. F. Yang, Y. Y. Wang and L. Hou, Dalton Trans., 2018, 47, 1682-1692.

4. B. Li, J. Zhou, F. Bai and Y. Xing, Dyes Pigments, 2020, 172, 10786.

5. Y. S. Shi, Q. Yu, J. W. Zhang and G. H. Cui, CrystEngComm., 2021, 23, 1604-1615.

6. S. L. Yang, Y. Y. Yuan, P. P. Sun, T. Lin, C. X. Zhang and Q. L. Wang, New J. Chem., 2018, 42, 20137-20143.

7. Z. L. Ma, J. Y. Shi, M. C. Wang and L. Tian, Dyes Pigments, 2021, 185, 108930.

8. G. H. Liu, Y. Li, J. Chi, N. Xu, X. L. Wang, H. Y. Lin, B. K. Chen and J. R. Li, Dalton Trans., 2020, 49, 737-749.

Fig. S1. IR spectra of JXUST-9 and JXUST-9 after soaked in different aqueous solutions containing Fe^{3+} , MnO_4^- and $Cr_2O_7^{2-}$ for 24 h, respectively.

Fig. S2. The topological analysis and representations of JXUST-9.

Fig. S3. The TGA curve of JXUST-9.

Fig. S4. (a) The emission spectra of **JXUST-9** soaked in water at room temperature for a week or soaked in boiling water for 24 h. (b) The emission spectra of **JXUST-9** in aqueous solution with different pH values.

Fig. S5. (a) The PXRD patterns **JXUST-9** after sensing Fe^{3+} , MnO_4^- and $Cr_2O_7^{2-}$ for 5 cycles. (b) PXRD patterns of **JXUST-9** soaked in aqueous solutions with different pH values for 12 h. (c) PXRD patterns of **JXUST-9** soaked in common organic solvents for 24 h.

Fig. S6. Stern-Volmer plots of JXUST-9 for Fe³⁺, MnO_4^- and $Cr_2O_7^{2-}$.

Fig. S7. The relative fluorescence intensity of **JXUST-9** at 619 nm after five times of recycling toward Fe³⁺ (a), MnO₄⁻ (b) and Cr₂O₇²⁻ (c) ($\lambda_{ex} = 344$ nm).

Fig. S8. The decay curves of **JXUST-9** (a), **JXUST-9**@Fe³⁺ (b), **JXUST-9**@MnO₄⁻ (c) and **JXUST-9**@Cr₂O₇²⁻ (d) monitored at 619 nm, and the luminescence lifetime of **JXUST-9**, **JXUST-9**@Fe³⁺, **JXUST-9**@MnO₄⁻ and **JXUST-9**@Cr₂O₇²⁻ (e).

Fig. S9. The absorption spectra of H_2BTDC , Fe^{3+} , MnO_4^- and $Cr_2O_7^{2-}$ in aqueous solution.