Supplementary Information

Encapsulation of L-Valine, D-Leucine and D-Methionine by Cucurbit[8]uril

Zeng-Hui Zhang,^a Rui-Lian Lin,^b Xiang-Yun Yu,^a Li-Xia Chen,^a Zhu Tao,^a Xin Xiao,*^a Gang Wei,*^c Carl Redshaw,^d and Jing-Xin Liu *^b

^{a.} Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China. E-mail: gyhxxiaoxin@163.com

^{b.} College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China. E-mail: jxliu411@163.com

^{c.} CSIRO Mineral Resources, PO Box 218, Lindfield, NSW 2070, Australia. E-mail: gang.wei@csiro.au

^{d.} Department of Chemistry, University of Hull, Hull HU6 7RX, U.K.

Figure S1. ITC profile of Q[8] with L-Val at 298.15 K

Figure S2. ITC profile of Q[8] with D-Leu at 298.15 K.

Figure S3. ITC profile of Q[8] with D-Met at 298.15 K.

 Table S1. ITC measurements of the thermodynamics for the interactions between amino acids and
 Q[8] at 298.15 K

Date	L-Val ₂ @Q[8]	D-Leu ₂ @Q[8]	D-Met ₂ @Q[8]
Ka (M ⁻²)	5.847×10 ⁷	7.648×10 ⁷	2.825××10 ⁷
$K_{a1}(M^{-1})$	$(5.847 \pm 0.4851) \times 10^4$	$(7.648\pm0.09621) \times 10^4$	$(2.825\pm0.3431) \times 10^4$
$K_{a2}(M^{-1})$	$1.000 \times 10^3 \pm 1.204 \times 10^{-2}$	$1.000 \times 10^3 \pm 2.224$	$(1.000\pm 0.2599) \times 10^{3}$
$\Delta H_1 (kJ \cdot mol^{-1})$	-11.11±2.358	-22.50±0.239	-44.38±9.777
$\Delta H_2(kJ \cdot mol^{-1})$	-62.86±49.15	-62.70±17.75	-8.129±2.054
$T\Delta S_{I}$ (kJ·mol ⁻¹)	16.0971185	5.372663	-18.974266
$T\Delta S_2$ (kJ·mol ⁻¹)	-45.73621	-45.587135	8.9951855