Supporting Information

Enhancement of the Microwave Absorption Properties by Adjusting the Sintering Conditions and Canbon Shell Thickness of Ni@C Submicrospheres

Xun Shen, ^a Shu-Hao Yang, ^b Peng-Gang Yin, ^b Chao-Qin Li, *^a Jin-Rui Ye*^c and Guang-Sheng Wang*^b

Fig. S1 XRD patterns of the Ni and various Ni@C samples.

Fig. S2 TG curves of the Ni@C submicrospheres with different carbon shell thickness.

Fig. S3 FESEM image of the Ni@C/PVDF composites(S_2) and corresponding elemental mapping images of Ni, C and F.

Fig. S4 Relative complex permittivity and complex permeability of the Ni/PVDF composites in the frequency range from 2.0 to18.0 GHz.

Fig. S5 Real parts (a-c) and imaginary parts (d-f) of the permittivity of the various Ni@C/PVDF composites in the frequency range from 2.0 to18.0 GHz.

Fig. S6 Real parts (a-c) and imaginary parts (d-f) of the permeability of the various Ni@C/PVDF composites in the frequency range from 2.0 to18.0 GHz.