Support information for: Silica mineralization on anisotropic gelatin-hydrogel scaffolds

Kazuma Otsuka and Kazuki Murai*

Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.

* Corresponding author: murai_kazuki@shinshu-u.ac.jp (Dr. K. Murai)

Contents

- 1. **Figure S1.** EDX mapping of the hybrid gels prepared at each system.
- Figure S2. Relationship between the normalized absorbances of the Si-O-Si band and the Amide I band in hybrid gel systems with glass, polypropylene (PP), and polyvinyl chloride (PVC) substrates.
- 3. **Figure S3.** Changing appearance of gelatin hydrogels with glass, polypropylene (PP), and polyvinyl chloride (PVC) substrates during silica mineralization.
- 4. **Figure S4.** Time dependence of surficial-property changes in pristine hydrogels and hybrid gels with glass, polypropylene (PP), and polyvinyl chloride (PVC) substrates.
- 5. **Figure S5.** ATR-FTIR spectral analysis of the (a) pristine hydrogel systems and (b) hybrid gel systems.
- 6. **Figure S6.** Changes in storage elastic modulus G' and loss elastic modulus G" with temperature for (a) pristine hydrogels and (b) hybrid gels with glass, polypropylene (PP), and polyvinyl chloride (PVC) substrates.

Hybrid gel (Glass system)

Figure S1. EDX mapping of the hybrid gels prepared at each system.

Figure S2. Relationship between the normalized absorbances of the Si-O-Si band and the Amide I band in hybrid gel systems with glass, polypropylene (PP), and polyvinyl chloride (PVC) substrates.

Figure S3. Changing appearance of gelatin hydrogels with glass, polypropylene (PP), and polyvinyl chloride (PVC) substrates during silica mineralization.

Figure S4. Time dependence of surficial-property changes in pristine hydrogels and hybrid gels with glass, polypropylene (*PP*), and polyvinyl chloride (*PVC*) substrates.

Sample –	Conformation / %		
	α -helix	β -sheet	Random coil
Pristine gel-Glass	45	39	16
Pristine gel-PP	48	36	16
Pristine gel-PVC	48	36	16
Hybrid gel-Glass	62	31	7
Hybrid gel-PP	64	33	3
Hybrid gel-PVC	64	33	3

Figure S5. ATR-FTIR spectral analysis of the (a) pristine hydrogel systems and (b) hybrid gel systems. Dotted lines show the peak deconvolution of the amide I band from antiparallel β -sheet, β -sheet, α -helix, and random coil conformations.

Figure S6. Changes in storage elastic modulus G' and loss elastic modulus G" with temperature for (a) pristine hydrogels and (b) hybrid gels with glass, polypropylene (PP), and polyvinyl chloride (PVC) substrates.