Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Fecht's acid revisited: a spirocyclic dicarboxylate for non-aromatic MOFs

Valentyna D. Slyusarchuk and Chris S. Hawes

Supporting Information

1.	Additional Structural Figures	2
2.	Crystallographic Data Tables	7
3.	X-ray Powder Diffraction	8
4.	Thermogravimetric Analysis	9
5.	Gas Adsorption Data	10
6.	NMR Spectra	13
7.	References	15

1. Additional Figures

Figure S1 Description of the double decarboxylation step in the synthesis of H₂SHDC which gives only two enantiomers, shown here as the four possible combinations of decarboxylations from the tetracarboxylate. A/B and C/D are identical, related by rotation. A/D and B/C are enantiomers, visualised by reflection in the plane of the page, and A/C and B/D are enantiomers by reflection perpendicular to the page.

Figure S2. Representative structure of SHDC with calculated hydrogen atom positions shown

Figure S3 Typical disorder mode observed for **SHDC** molecules in complexes **1** and **2**. In this example the spiro carbon atom position is precisely shared between two orientations of the molecule (coloured separately), but for the examples in complex **1** this atom is also split across the symmetry element. Hydrogen atoms are omitted for clarity.

Figure S4 The asymmetric unit of complex **1**, ADPs are rendered at the 50% probability level. Note that the carbon backbones of the three SHDC residues missing terminal carboxylates from the asymmetric unit are modelled at 50% occupancy and split across inversion centres; the carboxylate (COO) atoms are generated by symmetry.

Figure S5 The asymmetric unit of complex **2**, with ADPs rendered at the 50% probability level. Note that the spiro carbon atom occupies an inversion centre and all remaining atoms of the **SHDC** molecule are modelled at half occupancy, with the second overlapping (Fig. S2) orientation generated by symmetry.

Figure S6 UV-Visible absorption spectrum of a 40 μ M solution of H₂SHDC in methanol showing only baseline noise above 235 nm.

2. Crystallographic Data Tables

Table S1, Crv	stallographic Ta	ables for Co	mplex 1 and	Complex 2
	stunographic re		mpion i una	Complex 2
	01		1	1

Compound Reference	1	2
Empirical formula	$C_{88}H_{104}N_2O_{38}Yb_6$	$C_{21}H_{20}N_2O_4Zn$
Formula weight	2835.97	429.76
Temperature/K	150	150
Crystal system	monoclinic	orthorhombic
Space group	$P2_{1}/n$	Pnna
a/Å	12.4079(8)	11.3429(10)
b/Å	20.8937(14)	12.4311(10)
c/Å	19.4442(12)	18.5115(14)
α/°	90	90
β/°	90.801(2)	90
γ/°	90	90
Volume/Å ³	5040.4(6)	2610.2(4)
Z	2	4
$\rho_{calc}g/cm^3$	1.869	1.094
μ/mm ⁻¹	5.593	0.963
F(000)	2740	888
Crystal size/mm ³	$0.15 \times 0.14 \times 0.05$	$0.35 \times 0.31 \times 0.16$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
20 range for data	4.19 to 53.074	6.556 to 53
collection/°		
Index ranges	$-13 \le h \le 15, -26 \le k \le 26,$ $-24 \le 1 \le 22$	$-12 \le h \le 14, -15 \le k \le 15, -23 \le 1 \le 23$
Reflections collected	50050	15765
Independent reflections	10423 [$R_{int} = 0.0868$, $R_{sigma} = 0.0597$]	2688 [R _{int} = 0.0469, R _{sigma} = 0.0297]
Data/restraints/parameters	10423/640/703	2688/81/171
Goodness-of-fit on F ²	1.019	1.054
Final R indexes [I>=2σ (I)]	$R_1 = 0.0599, wR_2 = 0.1446$	$R_1 = 0.0501, wR_2 = 0.1293$
Final R indexes [all data]	$R_1 = 0.0952, wR_2 = 0.1663$	$R_1 = 0.0758, wR_2 = 0.1502$
Largest diff. peak/hole / e Å ⁻³	3.51/-1.85	0.33/-0.36
CCDC Number	2106213	2106214

3. Powder X-Ray Diffraction Data

Figure S7 X-ray powder diffraction data for complex **1** showing pattern simulated from single crystal data at 150K (black), measured as synthesised (green, room temperature), measured after soaking in methanol (red, room temperature/capillary) and measured after gas adsorption measurements (blue, room temperature)

Figure S8 X-ray powder diffraction data for complex **2** showing pattern simulated from single crystal data at 150K (black), measured as synthesised (green, room temperature), measured after soaking in methanol (red, room temperature/capillary) and measured after gas adsorption measurements (blue, room temperature)

4. Thermogravimetric Analysis

Figure S10 Thermogravimetric Analysis for complex 2, as synthesised (red) and after soaking in MeOH (black)

5. Gas Adsorption Data

Figure S11 CO₂ adsorption isotherms for compound 1 at 278, 283 and 288 K.

Figure S12 N_2 adsorption (black, filled) and desorption (red, hollow) isotherms for compound 1 at 77 K.

Figure S13 CO₂ adsorption isotherms for compound 2 at 278, 283 and 288 K.

Figure S14 N₂ adsorption (black, filled) and desorption (red, hollow) isotherms for compound 2 at 77 K.

Enthalpy of Adsorption Calculations

The isosteric heat of adsorption for CO₂ in complexes **1** and **2** was estimated using a leastsquares fitting routine of a virial thermal adsorption equation modelling $\ln(P)$ as a function of gas loading.^{S1} The model takes the form $\ln(P) = \{\ln(N) + (a_0 + a_1N + a_2N^2...)/T + b\}$, where N represents the surface excess adsorption (mmol) at temperature T and a_0 , a_1 and a_2 are coefficients determined through least-squares fitting. The original parameter set of 5 parameters was sequentially reduced to maximise the data:parameter ratio. The enthalpy of adsorption is then given by the relation $Q(N) = -R(a_0 + a_1N + a_2N^2...)$. Optimised coefficients and parameters are given below.

Compound	1	2
Temperatures (K)	278, 283, 288	278, 283, 288
a_0	-4325.95	-3847.37
a_1	29.90523	57.80537
В	19.9345	18.04117
\mathbb{R}^2	0.9980	0.9974
Datapoints fitted	138	138

Figure S15 Estimated CO_2 adsorption enthalpy as a function of gas loading for compounds 1 and 2.

6. NMR Spectra

Figure S16. ¹H NMR spectrum for H₂SHDC with proton numbering scheme

Figure S17 ¹³C NMR Spectrum for H₂SHDC with carbon numbering scheme

7. References

S1. L. Czepirski and J. Jagiello, *Chem. Eng. Sci.* 1989, **44**, 797-801; S. Tedds, A. Walton, D. P. Broom and D. Book, *Faraday Discuss.* 2011, **151**, 75-94