## Hexamethyldisilazane-assisted Mn<sup>2+</sup> doping of perovskite nanocrystals under ambient conditions

Kaiwen Hu†<sup>a</sup>, Yongfei Hu†<sup>a</sup>, Tan Li<sup>a</sup>, Fen Qiao<sup>b</sup>, Yunxia Chen<sup>c</sup>, Jianjun Han<sup>a\*</sup>, Lee Li<sup>d</sup>, Ghafar Ali<sup>e</sup>, Yi Xie<sup>a\*</sup>

<sup>a</sup>State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China.

<sup>b</sup> School of Energy and Power Engineering, Jiangsu University, No.301, Xuefu Road, Zhenjiang 212013, P. R. China.

<sup>c</sup> School of Materials Science and Engineering, Jingdezhen Ceramic University, Jiangxi, P. R. China.

<sup>d</sup> School of Electrical and Electronic Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P.R. China.

<sup>e</sup> Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Nilore, Islamabad, Pakistan.

Email: xiey@whut.edu.cn; <u>hanjj@whut.edu.cn</u>

1. Characterization of the As-synthesized Mn<sup>2+</sup>-doped LHP Nanocrystals



Fig. S1 TEM images of the typical Mn<sup>2+</sup>-doped CsPbCl<sub>3</sub> NCs achieved in the presence of different amounts of Mn as dictated.



Fig. S2 XRD patterns of  $Mn^{2+}$ -doped CsPbCl<sub>3</sub> nanocrystals synthesized in the presence of different amounts of  $Mn^{2+}$  ions in the precursors (labelled as Mn:Pb).



Fig. S3 Time-resolved PL decays and fitting curves of the various  $Mn^{2+}$ -doped CsPbCl<sub>3</sub> nanocrystals monitored at 400 nm (a-d) and 600 nm (e-h), respectively. The samples are synthesized in the presence of different feed Mn:Pb ratios as dictated in each panel.



Fig. S4 High-resolution XPS spectrum of Cs 3d of the representative  $Mn^{2+}$ -doped CsPbCl<sub>3</sub> nanocrystals.



Fig. S5 Experimental PL emission spectra (a) and TEM images (b-d) of the aliquots of the  $Mn^{2+}$ doped CsPbCl<sub>3</sub> nanocrystals collected at different reaction time. The samples are synthesized in the presence of Mn:Pb precursor ratio of 2.5:1 and HMDS of 6 mL.



**Fig. S6** (a-b) Optical absorbance spectra (a) and PL emissions spectra (b), and (c-d) TEM images of the typical Mn<sup>2+</sup>-doped CsPbCl<sub>3</sub> NCs achieved in the presence of different amounts of HMDS as dictated.



Fig. S7 FTIR spectra of the representative  $Mn^{2+}$ -doped CsPbCl<sub>3</sub> nanocrystals (a) and the pure oleylamine (OM), oleic acid (OA) and hexamethyl disilazane (HMDS) as dictated (b), respectively.



**Fig. S8** Experimental PL emission spectra of typical products collected in the presence of both Mn2+ and HMDS, no HMDS and no  $Mn^{2+}$  ions, respectively (a), and digital photographs of the corresponding dispersions under UV light off (b) and on (c), respectively.



**Fig. S9** (a) Digital photograph of Mn<sup>2+</sup>-doped CsPbCl<sub>3</sub> dispersion under normal indoor light and UV illumination (inset), and (b) TEM image and HRTEM image (inset) of the large-scaled synthesized Mn<sup>2+</sup>-doped CsPbCl<sub>3</sub> nanocrystals. The lattice spacing of 0.39 nm marked in HRTEM image displays the (101) crystal plane of tetragonal phase of CsPbCl<sub>3</sub>.

**Table S1** The summarization on the optical characterization of the  $Mn^{2+}$ -doped CsPbCl<sub>3</sub> nanocrystals achieved in the presence of different Mn:Pb precursor ratios.

|       | PL peak   | Mn:(Mn+Pb) in         | Lifetimes Lifeti       | mes      |
|-------|-----------|-----------------------|------------------------|----------|
| Mn:Pb | positions | the final NCs PLQY (% | monitored at 400 monit | tored at |
|       | (nm)      | (%) <sup>a</sup>      | nm (ns) 600 n          | m (ms)   |
|       | · · ·     |                       |                        | . /      |
|       |           |                       |                        |          |
| 1:1   | 406/591   | 33 18.3               | 4.59 1.36              |          |
|       |           |                       |                        |          |
|       |           |                       |                        |          |
| 1.5:1 | 406/592   | 39 18.6               | 0.70 1.16              |          |
|       |           |                       |                        |          |
| - 2 1 | 406/502   | 12 10.0               | 0.70 1.15              |          |
| 2:1   | 406/592   | 43 18.9               | 0.70 1.15              |          |
|       |           |                       |                        |          |
| 2 5.1 | /06/593   | 51 39.6               | 0.68 1.04              |          |
| 2.3.1 | 400/393   | 51 59.0               | 0.00 1.04              |          |
|       |           |                       |                        |          |
|       |           |                       |                        |          |

<sup>a</sup> Analyzed by using Inductively coupled plasma-optical emission spectroscopy (ICP-OES) test.

| Br:Cl | Absorption peak | PL Peak (nm) | FWHM (nm) | Relative intensity |
|-------|-----------------|--------------|-----------|--------------------|
|       | (nm)            |              |           | (peak2/peak1)      |
| 0:1   | 384             | 406/594      | 5/38      | 1.1                |
| 1:1   | 419             | 425/593      | 10/39     | 0.45               |
| 2:1   | 431             | 440/591      | 14/55     | 0.3                |
| 3:1   | 442             | 462/         | 15/-      | 0                  |

**Table S2** The summarization on the optical characterization of the  $Mn^{2+}$ -doped  $CsPbBr_xCl_{3-x}$  nanocrystals achieved in the presence of different Br:Cl precursor ratios.

## 2. Characterization of Anion-exchanged Mn-doped LHP Nanocrystals

**Preparation of PbBr**<sub>2</sub> **and PbI**<sub>2</sub> **Stock Solution for Anion Exchange**. Typically, 69 mg (i.e., 0.188 mmol) of PbBr<sub>2</sub>, 10 ml of ODE, 1 ml of OM and 0.5 ml of OA were loaded into a 50 mL three-neck flask. The temperature was then raised to 100 °C under vacuum and kept stirring for 60 min. The system was then filled with Ar gas and the reaction was continued at 120°C for additional 60 min. The resulting PbBr<sub>2</sub> stock solution was cooled to room temperature, transferred to a vial and stored in the glove box for subsequent anion exchange. The preparation process for the PbI<sub>2</sub> stock solution was the same as above except that PbI<sub>2</sub> (87 mg) instead of PbBr<sub>2</sub> was used.



**Fig. S10** (a) Optical absorbance spectra and (b) PL spectra of the various Mn-doped CsPbBr<sub>x</sub>Cl<sub>3-x</sub> nanocrystals achieved by anion exchange of the as-synthesized Mn-doped CsPbCl<sub>3</sub> in the presence of different amounts of Br<sup>-</sup> ions as dictated. The top panel presents the digital photographs of corresponding nanocrystals dispersed in hexane under UV light illumination (365 nm excitation wavelength).



**Fig. S11** (a) Optical absorbance spectra and (b) PL spectra of the various Mn-doped CsPbI<sub>x</sub>Cl<sub>3-x</sub> nanocrystals achieved by anion exchange of the as-synthesized Mn-doped CsPbCl<sub>3</sub> in the presence of different amounts of I<sup>-</sup> ions as dictated. The top panel presents the digital photographs of corresponding nanocrystals dispersed in hexane under UV light illumination (365 nm excitation wavelength).