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Figure S1 (a) An example of the design of the seed crystal to fabricate <100>-designed GBs. (b) An

example of the design of the seed crystal to fabricate <110>-designed GBs. 4 GBs can be fabricated

by combining 5 seed crystal plates.
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Figure S2 (a) An optical image and (b) carrier concentration of an example of the ingot cross-section
with <100>-designed GBs. This distribution shows solid-liquid interface shape changes from convex
to concave seen from solid with crystal growth proceeds. (c) The results of analyzing the GB plane
inclination angle with respect to z-direction (6) and the angle between the direction perpendicular

to the solid-liquid interface and the z-direction (¢) for <100> (9 13 0)/(_510) GB (green line in Fig.
S2(b))
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Figures S3 (a) Carrier concentration and the position of four <100>-designed GBs. Quantitative
results of dand @ at GBs from left to right are shown in Fig. S3 (b)~(e), respectively. It is seen that
the behavior of the GBs is well explained by our theory in the vicinity of the seed crystal. On the
other hand, at the upper position (y = 40 ~ 80 mm), some GBs do not follow our theory as shown in
Fig. S3 (b) and (c). The interaction of dislocations with GBs might be related to the phenomena.
Notably, only 6 among 17 GBs showed such an unpredictable behavior, and our simple theory

explains the majority of GBs.
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Figure S4[1(a) GB growth direction &to minimize 4£(8) when ¢ = 30° estimated by assuming a
linear model. The GB energy per unit area ( £;) at €= 0, and the coefficient of increase of the GB
energy per unit area (C) were treated as parameters (£;: 0~ 1.6, C: 0 ~ 0.02,) for the calculation.
(b) The relationship between 4£(8)and fat Eand Cwhich corresponds to 1, 2, and 3 in Figure
S4(a). It is seen that the 8to minimize 4£(8) varies depending on the combination of £;;,and C



Tablel Relationship between GB structure, GB energy and GB growth direction.
These results suggest that the GB energies of <110>-designed GBs such as 23 and 29 GBs smaller
than those of <100>-designed GBs such as 25, 213, and 225 GBs.

Type of GBs Eire Experimental behavior

{111}23 0.051J/m? by DFT [Ref.51] 1. 6= 0°,0=7.5°(initial interface)

{221}39 0.32 or 0.29 J/m? by DFT 1. 6= 0°,=8°(initial interface)
[Ref.52-5]

{221}39 0.45 J/m?2 by molecular- 1. 6= 0°,9=8°(initial interface)

dynamics simulation
techniques using the

Stillinger-Weber potential

[Ref.S9]
{310}25 0.42 J/m?2 by DFT [Ref.S56-8] 1. 6=17.6°,0=28"(initial interface)
2. 6= 11.5°,$=28.3"(initial interface)
{510}213 0.89 J/m?2 by molecular- 6= 17.5°,$=28.9°(initial interface)

dynamics simulation
techniques using the
Stillinger-Weber potential[Ref.
S9]

{710}225 0.84 J/m? by molecular- 0= 1.5°,¢=6.8°(initial interface)

dynamics simulation
techniques using the
Stillinger-Weber potential[Ref.
S9]
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