Supporting Information

Designing luminescent diimine-Cu (I)phosphine complexes by tuning N-ligand counteranions: correlation of weak interactions, luminescence and THz absorption spectra

Zhen-Zhou Sun, †^a Ning Zhu, †^a Xun Pan, ^a Guo Wang, ^a Yu-Ping Yang, ^b Qi-Ming Qiu,^c Zhong-Feng Li, ^a Xiu-Lan Xin, ^d Jian-Ming Liu, ^e Xiao-Qi Li, ^a Qiong-Hua Jin, *^{a,f} Zhi-Gang Ren,*^g and Qing-Li Zhou,*^h

^a Department of Chemistry, Capital Normal University, Beijing 100048, China, E-mail: jingh@cnu.edu.cn, jinqh204@163.com

^b School of Science, Minzu University of China, Beijing 100081, China

^c School of Science, China University of Geosciences, Beijing 100083, China, E-mail: qiuqiming890521@163.com

^d School of Light Industry, Beijing Technology and Business University, Beijing 100048, China

^e School of Mathematical Sciences, Peking University, Beijing 100871, China

^f State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian 350002, China

^g College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China, E-mail: <u>renzhigang@suda.edu.cn</u>

^h Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China, E-mail: <u>qlzhou@cnu.edu.cn</u>

Table of Contents

Fig. S1. The PXRD patterns for complex 1: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S2. The PXRD patterns for complex **2**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S3. The PXRD patterns for complex **3**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S4. The PXRD patterns for complex **4**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S5. The PXRD patterns for complex **5**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S6. The PXRD patterns for complex **6**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S7. Thermal stability curves for complexes 1, 2, 3, 5.

Fig. S8. Coordination environment of Cu(I) for **1**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S9. Coordination environment of Cu(I) for 2. Thermal ellipsoids drawn at the 30% probability

level. All hydrogen atoms and solvent molecules are omitted for clarity.

Fig. S10. Coordination environment of Cu(I) for **3**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S11. Coordination environment of Cu(I) for **4**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S12. Coordination environment of Cu(I) for **5**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S13. Coordination environment of Cu(I) for **6**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S14. Weak hydrogen bonds in **3**, including C-H…F bonds (C2-H2…F1ⁱ, 2.44 Å, C19-H19…F4 ⁱⁱ, 2.41 Å, C20-H20B…F3 ⁱⁱⁱ, 2.47 Å, C33-H33A…F4 ⁱⁱⁱ, 2.52 Å, C35-H35…F3 ⁱⁱⁱ, 2.49 Å, C42-H42…F2, 2.40 Å, Symmetric codes: ⁱ 1/2-x, 1/2-y, 1/2-z; ⁱⁱ 1-x, 1-y, 1-z; ⁱⁱⁱ x, -1+y, z).

Fig. S15. Weak hydrogen bonds in **4**, including C-H...O bonds (C9-H9...O4ⁱ, 2.50 Å, C17-H17...O1 ⁱⁱ, 2.46 Å, C20-H20A...O2, 2.54 Å, C33-H33B...O1, 2.54 Å, C36-H36...O3ⁱⁱⁱ, 2.44 Å, C45-H45...O2, 2.57 Å, Symmetric codes: ⁱ 1-x, 1/2+y, 1/2-z; ⁱⁱ 1-x, 1-y, 1-z; ⁱⁱⁱ -1/2+x, 1-y, z).

Fig. S16. Weak hydrogen bonds in **5**, including C-H…F bonds (C1-H1…F1, 2.32 Å, C3-H3…F4ⁱ, 2.24 Å, C10-H10…F2ⁱⁱ, 2.49 Å, C13-H13A…F1, 2.49 Å, C14-H14B…F1, 2.49 Å, C29-H29…F1ⁱⁱⁱ, 2.53 Å, C34-H34…F3ⁱⁱ, 2.36 Å, Symmetric codes: ⁱ 2-x, 2-y, 1-z; ⁱⁱ -1+x, y, z; ⁱⁱⁱ 2-x, 1-y, 1-z).

Fig. S17. Weak hydrogen bonds in **6**, including C-H…O bonds (C2-H2B…O2, 2.55 Å, C18-H18…O1 ⁱ, 2.55 Å, C32-H32…O3 ⁱ, 2.53 Å, C39-H39…O4 ⁱⁱ, 2.37 Å, C41-H41…O2, 2.37 Å, Symmetric codes: ⁱ 1+x, y, z; ⁱⁱ 1-x, 1-y, -z).

Fig. S18. UV-vis absorption spectra for ligands in CH₂Cl₂ at room temperature.

Fig. S19. Solid-state UV-vis spectra for complexes 1-6.

Table S1. Crystallographic data for 1-6.

Table S2. Selected bond length (Å) and angles (°) for 1-6.

Table S3. Intermolecular π - π interactions for complex 1

Table S4. Intermolecular C-H^{\dots} π interactions for complex 2.

Table S5. Intermolecular π - π interactions for complex 3

Table S6. Intermolecular C-H π interactions for complex **3**.

Table S7 Hydrogen bonds in asymmetric units for complexes 3.

Table S8. Intermolecular π - π interactions for complex 4

- **Table S9.** Intermolecular C-H $\dots\pi$ interactions for complex 4.
- Table S10 Hydrogen bonds in asymmetric units for complexes 4.
- Table S11. Intermolecular π - π interactions for complex 5
- **Table S12.** Intermolecular C-H^{\dots} π interactions for complex 5.

Table S13 Hydrogen bonds in asymmetric units for complexes 5.

- **Table S14.** Intermolecular π - π interactions for complex 6
- Table S15 Hydrogen bonds in asymmetric units for complexes 6.
- Table S16. Energy, oscillator strength and major contribution of the calculated transitions for 1-6.
- Table S17. Calculated molecular frontier orbital energy / eV for 1-6.

Fig. S1. The PXRD patterns for complex 1: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S2. The PXRD patterns for complex **2**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S3. The PXRD patterns for complex **3**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S4. The PXRD patterns for complex **4**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S5. The PXRD patterns for complex **5**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S6. The PXRD patterns for complex **6**: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Fig. S7. Thermal stability curves for complexes 1, 2, 3, 5.

Fig. S8. Coordination environment of Cu(I) for **1**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity Symmetric codes: ⁱ 2-x, 1-y, 1-z.

Fig. S9. Coordination environment of Cu(I) for **2**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms and solvent molecules are omitted for clarity.

Fig. S10. Coordination environment of Cu(I) for **3**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S11. Coordination environment of Cu(I) for **4**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S12. Coordination environment of Cu(I) for **5**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S13. Coordination environment of Cu(I) for **6**. Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Fig. S14. Weak hydrogen bonds in **3**, including C-H…F bonds (C2-H2…F1ⁱ, 2.44 Å, C19-H19…F4 ⁱⁱ, 2.41 Å, C20-H20B…F3ⁱⁱⁱ, 2.47 Å, C33-H33A…F4ⁱⁱⁱ, 2.52 Å, C35-H35…F3ⁱⁱⁱ, 2.49 Å, C42-H42…F2, 2.40 Å, Symmetric codes: ⁱ 1/2-x, 1/2-y, 1/2-z; ⁱⁱ 1-x, 1-y, 1-z; ⁱⁱⁱ x, -1+y, z).

Fig. S15. Weak hydrogen bonds in **4**, including C-H^{...}O bonds (C9-H9^{...}O4^{*i*}, 2.50 Å, C17-H17^{...}O1 ⁱⁱ, 2.46 Å, C20-H20A^{...}O2, 2.54 Å, C33-H33B^{...}O1, 2.54 Å, C36-H36^{...}O3^{*iii*}, 2.44 Å, C45-H45^{...}O2, 2.57 Å, Symmetric codes: ⁱ 1-x, 1/2+y, 1/2-z; ⁱⁱ 1-x, 1-y, 1-z; ⁱⁱⁱ -1/2+x, 1-y, z).

Fig. S16. Weak hydrogen bonds in **5**, including C-H…F bonds (C1-H1…F1, 2.32 Å, C3-H3…F4ⁱ, 2.24 Å, C10-H10…F2ⁱⁱ, 2.49 Å, C13-H13A…F1, 2.49 Å, C14-H14B…F1, 2.49 Å, C29-H29…F1ⁱⁱⁱ, 2.53 Å, C34-H34…F3ⁱⁱ, 2.36 Å, Symmetric codes: ⁱ 2-x, 2-y, 1-z; ⁱⁱ -1+x, y, z; ⁱⁱⁱ 2-x, 1-y, 1-z).

Fig. S17. Weak hydrogen bonds in **6**, including C-H···O bonds (C2-H2B···O2, 2.55 Å, C18-H18···O1 ⁱ, 2.55 Å, C32-H32···O3 ⁱ, 2.53 Å, C39-H39···O4 ⁱⁱ, 2.37 Å, C41-H41···O2, 2.37 Å, Symmetric codes: ⁱ 1+x, y, z; ⁱⁱ 1-x, 1-y, -z).

Fig. S18. UV-vis absorption spectra for ligands in CH₂Cl₂ at room temperature.

Fig. S19. Solid-state UV-vis spectra for complexes 1-6.

Tuble 51, crystanographie data for 1 0.						
Complex	1	2	3	4	5	6
Formula	C59H52Cu2I2 N6P2	C64H64Cu2N 8O3P2	$\begin{array}{c} C_{45}H_{40}BCu\\F_4N_4P_2\end{array}$	$\begin{array}{c} C_{45}H_{40}ClCuN\\ 4O4P_2 \end{array}$	C43H36BCu F4N4P2	C43H36CuN4 P2ClO4
Formula weight	1287.88	1182.23	849.10	861.74	821.05	833.85
T / K	100(2)	100(2)	99.99(10)	99.97(10)	106.7	298(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	$P2_1 / c$	C_C	I2 / a	I2 / a	Ρĺ	Рİ
<i>a</i> / Å	12.647(3)	11.7324(2)	24.6200(2)	24.6439(3)	11.5699(5)	11.7400(11)
<i>b</i> / Å	17.053(3)	20.7132(3)	10.20780(9)	10.20305(13)	12.5429(3)	12.5965(13)
<i>c</i> / Å	17.208(3)	23.3587(4)	31.7453(3)	31.8756(4)	13.6715(4)	13.7194(14)
α / (°)	90	90	90	90	88.298(2)	88.186(2)
eta / (°)	131.69(3)	95.466(2)	98.0520(9)	98.5114(11)	73.809(3)	73.7570(10)
γ / (°)	90	90	90	90	87.479(3)	87.479(2)
V / Å ³	2771.2(14)	5650.71(16)	7899.46(13)	7926.63(16)	1903.17(12)	1945.6(3)
Ζ	2	4	8	8	2	2
$D_{calc} / g \cdot cm^{-3}$	1.543	1.387	1.428	1.444	1.433	1.423
F(000)	1284	2456	3504	3568	844	860
Goodness-of-fit on F ²	1.153	1.059	1.058	1.024	1.038	1.051
$R_{ m int}$	0.1453	0.0475	0.0547	0.0371	0.0178	0.0392
$R_1[I > 2\sigma(I)]^{[a]}$	0.0788	0.0827	0.0432	0.0389	0.0290	0.0632
$wR_2[I > 2\sigma(I)]$	0.2015	0.2124	0.1082	0.0947	0.0669	0.1504
R_1 (all data) ^[a]	0.0802	0.0832	0.0440	0.0407	0.0339	0.0870
wR2 (all data) ^[b]	0.2023	0.2129	0.1088	0.0958	0.0698	0.1597
CCDC	2075018	2075019	2075020	2075021	2075022	2075023

 Table S1. Crystallographic data for 1-6.

[a] $R = \sum (||F_0| - |F_c||) / \sum |F_0|.$ [b] $wR = [\sum w(|F_0|^2 - |F_c|^2) / \sum w(F_0^2)]^{1/2}.$

Table S2. Selected	l bond length (Å) and angles (°)	for 1-6 .

1			
Cu(1)-I(1)	2.642(2)	P(1)-Cu(1)-I(1)	118.73(8)
Cu(1)-P(1)	2.199(3)	N(1)-Cu(1)-I(1)	107.7(2)
Cu(1)-N(1)	2.091(7)	N(1)-Cu(1)-P(1)	120.0(2)
Cu(1)-N(2)	2.101(7)	N(1)-Cu(1)-N(2)	80.4(3)
		N(2)-Cu(1)-I(1)	101.0(2)
		N(2)-Cu(1)-P(1)	121.9(2)
			Dihedral Angle
		I1-Cu1-P1/N1-Cu1-N2	94.370

2			
Cu(1)-P(1)	2.2411(18)	N(1)-Cu(1)-P(1)	112.57(18)
Cu(1)-N(2)	2.123(6)	N(2)-Cu(1)-P(1)	117.37(17)
Cu(1)-N(1)	2.095(6)	N(2)-Cu(1)-N(1)	80.3(2)
Cu(1)-N(3)	1.941(9)	N(3)-Cu(1)-P(1)	115.0(3)
Cu(2)-P(2)	2.2372(19)	N(3)-Cu(1)-N(1)	107.9(3)
Cu(2)-N(7)	2.095(6)	N(3)-Cu(1)-N(2)	117.9(3)
Cu(2)-N(6)	2.123(7)	N(7)-Cu(2)-P(2)	116.62(17)
Cu(2)-N(8)	1.943(8)	N(7)-Cu(2)-N(6)	79.5(2)
		N(6)-Cu(2)-P(2)	116.29(17)
		N(8)-Cu(2)-P(2)	115.1(2)
		N(8)-Cu(2)-N(7)	112.0(3)
		N(8)-Cu(2)-N(6)	112.5(3)
			Dihedral Angle
		P1-Cu1-N3/N1-Cu1-N2	87.516
		P2-Cu2-N8/N6-Cu2-N7	90.423
3			
Cu(1)-P(1)	2.2505(6)	P(1)-Cu(1)-P(2)	107.55(2)
Cu(1)-P(2)	2.2563(6)	N(1)-Cu(1)-P(2)	121.45(5)
Cu(1)-N(1)	2.0689(18)	N(1)-Cu(1)-P(1)	112.39(5)
Cu(1)-N(2)	2.0673(18)	N(2)-Cu(1)-P(2)	116.32(5)
		N(2)-Cu(1)-P(1)	115.92(5)
		N(1)-Cu(1)-N(2)	81.81(7)
			Dihedral Angle
		P1-Cu1-P2/N1-Cu1-N2	86.407
4			
Cu(1)-P(1)	2.2537(6)	P(2)-Cu(1)-P(1)	107.77(2)
Cu(1)-P(2)	2.2518(6)	N(1)-Cu(1)-P(2)	115.96(5)
Cu(1)-N(1)	2.0664(17)	N(1)-Cu(1)-P(1)	116.61(5)
Cu(1)-N(2)	2.0672(17)	N(2)-Cu(1)-N(1)	81.87(7)
		N(2)-Cu(1)-P(2)	112.01(5)
		N(2)-Cu(1)-P(1)	121.15(5)
			Dihedral Angle
		P1-Cu1-P2/N1-Cu1-N2	86.441
5			
Cu(1)-P(1)	2.2304(5)	P(1)-Cu(1)-P(2)	104.855(19)
Cu(1)-P(2)	2.2417(5)	N(2)-Cu(1)-P(1)	110.65(4)
Cu(1)-N(1)	2.0606(16)	N(2)-Cu(1)-P(2)	114.28(5)

Cu(1)-N(2)	2.0710(15)	N(1)-Cu(1)-P(1)	116.30(4)
		N(1)-Cu(1)-P(2)	127.07(5)
		N(2)-Cu(1)-N(1)	81.48(6)
			Dihedral Angle
		P1-Cu1-P2/N1-Cu1-N2	91.822
6			
Cu(1)-N(3)	2.054(4)	N(3)-Cu(1)-N(4)	80.70(15)
Cu(1)-N(4)	2.061(3)	N(3)-Cu(1)-P(1)	127.51(11)
Cu(1)-P(1)	2.2327(12)	N(3)-Cu(1)-P(2)	116.18(10)
Cu(1)-P(2)	2.2239(14)	N(4)-Cu(1)-P(1)	115.06(10)
		N(4)-Cu(1)-P(2)	110.46(12)
		P(2)-Cu(1)-P(1)	104.67(5)
			Dihedral Angle
		P1-Cu1-P2/N3-Cu1-N4	91.551

Table S3	Intermolecula	ar π - π intera	actions for co	omplex 1.

	Cg→Cg	Distance / Å	Slippage / Å
1	$Cg(20) \rightarrow Cg(20)^{i}$	3.698(7)	1.442

Cg(20) = N1-C2-C3-C4-C5-C6

Symmetric codes: ⁱ 1-x, 1-y, 1-z

Ta	ble	S4	Intermo	lecular	C-]	H…π	interac	tions	for	comp	lex	2.

	С-Н→Сg	H Cg / Å	C-H···Cg / °	C…Cg / Å	C-H··· π / °	
2	C9-H9→Cg(10) ⁱ	2.89	146	3.7188	68	

Cg(10) = C23-C24-C25-C26-C27-C28

Symmetric codes: ⁱ -1+x, y, z

Table S5	Intermol	ecular	π-π	interact	ions	for co	omple	ex 3	•

	Cg→Cg	Distance / Å	Slippage / Å
3	$Cg(3) \rightarrow Cg(3)^i$	3.6114	1.442

Cg(3) = N1-C1-C2-C3-C4-C5

Symmetric codes: ⁱ 1/2-x, 1/2-y, 1/2-z

Table S6 Intermolecular C-H π interactions for complex 3.

				1	
	С-Н→Сg	H…Cg / Å	C-H···Cg / °	C…Cg / Å	С-Н… <i>π</i> / °
3	C11-H11→Cg(9) ⁱ	2.70	155	3.569(2)	72
	C20-H20A \rightarrow Cg(5) ⁱⁱ	2.97	139	3.758(3)	34
	C31-H31 \rightarrow Cg(9) ⁱⁱⁱ	2.97	161	3.859(3)	86

Cg(5) = N4-C15-C16-C19-C18-C17

Cg(9) = C34-C35-C36-C37-C38-C39

Symmetric codes: ⁱ 1/2-x, 1/2-y, 1/2-z; ⁱⁱ 1-x, 1-y, 1-z; ⁱⁱⁱ x, -1+y, z

				•		
	Hydrogen bonds	D-H / Å	H…A / Å	D···A / Å	D-H···A / °	
3	C2-H2F1 i	0.93	2.44	3.267(3)	149	
	C19-H19F4 ⁱⁱ	0.93	2.40	3.271(4)	155	
	C20-H20B…F3 ⁱⁱⁱ	0.97	2.47	3.426(3)	168	
	C33-H33A…F4 ⁱⁱⁱ	0.97	2.52	3.423(3)	156	
	C35-H35-F3 ⁱⁱⁱ	0.93	2.49	3.378(3)	159	
	C42-H42F2	0.93	2.40	3.168(3)	140	

Table S7 Typical hydrogen bonds in asymmetric units for complexes 3.

	Table S8 Intermolect	ular π - π interactions f	for complex 4 .
	Cg→Cg	Distance / Å	Slippage / Å
4	$Cg(4) \rightarrow Cg(4)^{i}$	3.5841	1.404

Cg(4) = N2 - C6 - C7 - C8 - C9 - C10

Symmetric codes: ⁱ 1/2-x, 3/2-y, 1/2-z

Table S9 Intermolecular C-H π interactions for complex 4.

Cg(10) = C40-C41-C42-C43-C44-C45

Cg(5) = N4-C15-C16-C17-C18-C19

Symmetric codes: ⁱ 1/2-x, 3/2-y, 1/2-z; ⁱⁱ 1-x, 1-y, 1-z

		JI J U	2	1		
	Hydrogen bonds	D-H / Å	H···A / Å	D…A / Å	D-H…A / °	
4	C9-H9O4 ⁱ	0.93	2.50	3.319(3)	147	
	C17-H17-O1 ⁱⁱ	0.93	2.46	3.316(4)	154	
	C20-H20AO2	0.97	2.54	3.496(4)	168	
	C33-H33BO1	0.97	2.54	3.443(3)	155	
	C36-H36O3 ⁱⁱⁱ	0.93	2.44	3.182(3)	137	
	C45-H45 O2	0.93	2.57	3.456(3)	159	

Table S10 Typical hydrogen bonds in asymmetric units for complexes 4.

Symmetric codes: i 1-x, 1/2+y, 1/2-z; ii 1-x, 1-y, 1-z; iii -1/2+x, 1-y, z

	Cg→Cg	Distance / Å	Slippage / Å
5	$Cg(6) \rightarrow Cg(6)^i$	3.7476	1.722

Cg(4) = C4-C5-C6-C7-C12-C11

Symmetric codes: ⁱ 1-x, 2-y, 1-z

Table S12	Intermolecular	С-Н…π	interactions	s for co	omplex 5.
1					

					_
C-H→Cα	H…Cα/Å	C-H…Cg angle / °	C…Ca distance / Å	$C - H \cdots \pi / \circ$	
C^{-11} / Cg	$\Pi \cup g / \Pi$	C-II Cg angle /	C Cg distance / II	C^{-11} π	

5	C8-H8 \rightarrow Cg(10) ⁱ	2.94	153	3.813(2)	72
	C13-H13B \rightarrow Cg(5) ⁱⁱ	2.99	114	3.514(2)	25

Cg(10) = 38-C39-C40-C41-C42-C43

Cg(5) = N4-C15-C16-C17-C18-C19

Symmetric codes: ⁱ 1-x, 2-y, 1-z; ⁱⁱ 2-x, 1-y, -z

Table S13	Typical	hydrogen	bonds in	asymmetric	units fo	r complexes 5.
	21	5 6		2		-

	Hydrogen bonds	D-H / Å	H…A∕Å	D···A / Å	D-H…A / °
5	C1-H1F1	0.95	2.32	3.264(2)	173
	C3-H3F4 ⁱ	0.95	2.24	3.075(4)	147
	C10-H10F2 ⁱⁱ	0.95	2.49	3.297(3)	143
	C13-H13A…F1	0.99	2.49	3.432(2)	158
	C14-H14B…F1	0.99	2.49	3.422(2)	157
	C29-H29F1 ⁱⁱⁱ	0.95	2.53	3.466(3)	168
	C34-H34F3 ⁱⁱ	0.95	2.36	3.287(3)	166

Symmetric codes: ⁱ 2-x, 2-y, 1-z; ⁱⁱ -1+x, y, z; ⁱⁱⁱ 2-x, 1-y, 1-z

Table S14 Intermolecular π - π	interactions f	for complex 6.
---	----------------	----------------

	Cg→Cg	Distance / Å	Slippage / Å
6	$Cg(10) \rightarrow Cg(10)^{i}$	3.749(3)	1.652

Cg(4) = C35-C36-C37-C38-C43-C42

Symmetric codes: ⁱ 2-x, 1-y, -z

T-LL-	C11	T1	1 1	1 1		····· · · · · ·	· · · · 1 · · · · · ·
I able s	212	I vnical	nvarogen	ponds in	asymmetric	units for	complexes b
		1) prom		001140 111			eemprenee e

	Hydrogen bonds	D-H / Å	H…A∕Å	D···A / Å	D-H…A / °
6	C2-H2BO2	0.97	2.55	3.486(6)	162
	C18-H18O1 i	0.93	2.55	3.453(9)	163
	C32-H32-O3 ⁱ	0.93	2.53	3.324(7)	143
	C39-H39O4 ⁱⁱ	0.93	2.37	3.176(10)	145
	C41-H41O2	0.93	2.37	3.303(7)	175

Symmetric codes: ⁱ 1+x, y, z; ⁱⁱ 1-x, 1-y, -z

 Table S16. Energy, oscillator strength and major contribution of the calculated transitions for 1-6.

Excited	Energy / eV	Oscillator strength	Major contribution (%)
state	(/ nm)		
1	4.8393	0.0987	HOMO-26 \rightarrow LUMO+2 (2.73)
absorption	(256.20)		$HOMO-25 \rightarrow LUMO (3.36)$
			$HOMO-16 \rightarrow LUMO+2 (2.56)$
			HOMO-14 \rightarrow LUMO+6 (8.36)
			HOMO-14 \rightarrow LUMO+7 (3.83)
			HOMO-13 \rightarrow LUMO+4 (2.51)
			HOMO-13 \rightarrow LUMO+5 (30.78)

			$HOMO-13 \rightarrow LUMO+8 (12.08)$
			$HOMO-10 \rightarrow LUMO+13 (2.48)$
1 emission	2.0756	0.0251	$HOMO-9 \rightarrow LUMO+1 (2.07)$
	(597.34)		HOMO-7 \rightarrow LUMO (5.04)
			$HOMO-7 \rightarrow LUMO+1 (3.63)$
			HOMO-6 \rightarrow LUMO (39.15)
			$HOMO-5 \rightarrow LUMO (3.18)$
			HOMO-4 \rightarrow LUMO (40.71)
			HOMO-2 \rightarrow LUMO (3.31)
2	4.7933	0.1715	$HOMO-28 \rightarrow LUMO+1 (3.56)$
absorption	(258.66)		$HOMO-27 \rightarrow LUMO+1 (12.19)$
			$HOMO-26 \rightarrow LUMO+1 (5.35)$
			HOMO-24 \rightarrow LUMO+2 (6.92)
			HOMO-24 \rightarrow LUMO+3 (2.98)
			$HOMO-23 \rightarrow LUMO+1 (12.93)$
			$HOMO-22 \rightarrow LUMO+1 (7.11)$
			$HOMO-21 \rightarrow LUMO+1 (4.41)$
			$HOMO-20 \rightarrow LUMO+1 (3.61)$
			$HOMO-19 \rightarrow LUMO+1 (8.75)$
			HOMO-19 \rightarrow LUMO+3 (2.37)
			$HOMO-13 \rightarrow LUMO+3 (6.97)$
			$HOMO-6 \rightarrow LUMO+12 (2.90)$
2 emission	3.3366	0.0270	$HOMO-8 \rightarrow LUMO \qquad (3.18)$
	(530.61)		$HOMO-8 \rightarrow LUMO+1 (7.00)$
			HOMO-7 \rightarrow LUMO (33.23)
			$HOMO-6 \rightarrow LUMO (39.30)$
			$HOMO-5 \rightarrow LUMO \qquad (9.50)$
			$HOMO-4 \rightarrow LUMO \qquad (3.78)$
3 4	4.8558	0.1706	$HOMO-16 \rightarrow LUMO (17.51)$
absorption	(255.33)		$HOMO-14 \rightarrow LUMO+1 (2.91)$
			$HOMO-11 \rightarrow LUMO+1 (2.54)$
			$HOMO-9 \rightarrow LUMO+2 \qquad (2.30)$
			$HOMO-3 \rightarrow LUMO+3 (12.02)$
			$HOMO-2 \rightarrow LUMO+5 \qquad (17.06)$
			$HOMO-1 \rightarrow LUMO+10 (15.45)$
			$HOMO-1 \rightarrow LUMO+11 \qquad (9.06)$
3 4	2.3920	0.1144	$HOMO-1 \rightarrow LUMO \qquad (98.00)$
emission	(518.32)		
5 6	4.6879	0.1386	$HOMO-15 \rightarrow LUMO \qquad (21.55)$
absorption	(264.48)		$HOMO-15 \rightarrow LUMO+1 (2.80)$
			$HOMO-12 \rightarrow LUMO+1 (4.50)$
			$HOMO-5 \rightarrow LUMO+1 \qquad (4.15)$
			$HOMO-4 \rightarrow LUMO+1 \qquad (6.30)$
			$HOMO-3 \rightarrow LUMO+2 (10.06)$

				$HOMO-2 \rightarrow LUMO+5$	(20.45)
				$HOMO \rightarrow LUMO+11$	(10.66)
5	6	2.5319	0.0198	HOMO-3 \rightarrow LUMO	(8.03)
emission		(489.69)		$HOMO-2 \rightarrow LUMO$	(28.55)
				HOMO-1 \rightarrow LUMO	(59.20)

Frontier orbital **3** and **4** 5 and 6 1 2 **HOMO-29** -7.473 -11.849 -7.532 -11.858 HOMO-28 -7.411 -7.524 -11.810 -11.807 HOMO-27 -7.329 -7.495 -11.758 -11.761 HOMO-26 -7.305 -7.493 -11.626 -11.665 HOMO-25 -7.267 -7.390 -11.549 -11.520 HOMO-24 -7.234 -7.332 -11.462 -11.331 **HOMO-23** -7.197 -7.308 -11.341 -11.256 HOMO-22 -7.155 -7.267 -11.307 -11.125 HOMO-21 -7.087 -7.220 -11.254 -10.983 HOMO-20 -7.051 -7.187 -11.174 -10.965 HOMO-19 -6.974 -7.164 -10.947 -10.933 HOMO-18 -6.951 -7.111 -10.344 -10.418 HOMO-17 -7.019 -9.824 -9.909 -6.847 -9.731 HOMO-16 -6.797 -7.000 -9.812 HOMO-15 -6.737 -6.863 -9.637 -9.576 HOMO-14 -9.575 -9.542 -6.436 -6.808 HOMO-13 -6.399 -6.790 -9.519 -9.516 HOMO-12 -6.328 -6.246 -9.478 -9.457 HOMO-11 -6.217 -9.421 -9.426 -6.276 HOMO-10 -5.930 -6.206 -9.362 -9.389 HOMO-9 -5.870 -6.142 -9.362 -9.351 HOMO-8 -9.343 -9.300 -5.792 -6.131 HOMO-7 -5.687 -6.058 -9.312 -9.288 HOMO-6 -5.588 -5.785 -9.263 -9.248 HOMO-5 -5.114 -5.457 -9.247 -9.225 HOMO-4 -5.029 -5.427 -9.149 -9.059 HOMO-3 -5.001 -5.417 -8.694 -8.697 HOMO-2 -4.952 -5.329 -8.540 -8.451 HOMO-1 -4.898 -5.149 -7.922 -7.931 HOMO -5.012 -7.842 -7.857 -4.825 -4.696 LUMO -2.191 -2.220 -4.524 LUMO+1 -2.154 -2.144 -4.573 -4.304 LUMO+2 -2.047-2.097 -3.404 -3.381 LUMO+3 -2.011 -2.029 -3.224 -3.174 LUMO+4 -1.154 -1.128 -3.128 -3.157

Table S17. Calculated molecular frontier orbital energy / eV for 1-6.

LUMO+5	-1.050	-1.012	-2.990	-3.075
LUMO+6	-0.901	-0.920	-2.921	-3.011
LUMO+7	-0.874	-0.838	-2.889	-2.956
LUMO+8	-0.805	-0.822	-2.755	-2.827
LUMO+9	-0.804	-0.756	-2.732	-2.682
LUMO+10	-0.691	-0.711	-2.652	-2.628
LUMO+11	-0.675	-0.595	-2.530	-2.469
LUMO+12	-0.550	-0.424	-2.398	-2.418
LUMO+13	-0.447	-0.376	-2.145	-2.198
LUMO+14	-0.322	-0.259	-2.050	-1.939
LUMO+15	-0.217	-0.243	-1.631	-1.648
LUMO+16	-0.193	-0.188	-1.396	-1.426
LUMO+17	-0.137	-0.103	-1.360	-1.151
LUMO+18	0.512	0.528	-1.082	-1.117
LUMO+19	0.548	0.617	-0.963	-1.053
LUMO+20	0.660	0.668	-0.922	-0.940
LUMO+21	0.678	0.766	-0.853	-0.798
LUMO+22	0.834	0.867	-0.742	-0.749
LUMO+23	0.947	0.970	-0.622	-0.710
LUMO+24	1.001	1.048	-0.560	-0.649
LUMO+25	1.105	1.068	-0.438	-0.431
LUMO+26	1.119	1.099	-0.371	-0.363
LUMO+27	1.137	1.131	-0.303	-0.275
LUMO+28	1.222	1.216	-0.196	-0.223
LUMO+29	1.298	1.333	-0.123	-0.188