"A family of powerful halogen-bond donors: A structural and theoretical analysis of triply activated 3-iodo-1phenylprop-2-yn-1-ones"

Vinu V. Panikkattu,^a Abhijeet S. Sinha^a and Christer B. Aakeröy.^{a*}

^aDepartment of Chemistry, Kansas State University, Manhattan, KS 66506;

Supplementary information

Table of Contents

1	Gen	eral Remarks3					
2	Synt	nthetic procedures3					
	2.1	1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one (US-I2)4					
	2.2	3-iodo-1-phenylprop-2-yn-1-one (US)4					
	2.3	1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (4F-I2)5					
	2.4	1-(4-fluorophenyl)-3-iodoprop-2-yn-1-one (4F)5					
	2.5	3-(3-(trimethylsilyl)propioloyl)benzonitrile (3CN-I2)5					
	2.6	3-(3-iodopropioloyl)benzonitrile (3CN)5					
	2.7	4-(3-(trimethylsilyl)propioloyl)benzonitrile (4CN-I2)5					
	2.8	4-(3-iodopropioloyl)benzonitrile (4CN)5					
	2.9	1-(3-nitrophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (3N-I2)5					
	2.10	3-iodo-1-(3-nitrophenyl)prop-2-yn-1-one (3N)6					
	2.11	1-(4-nitrophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (4N-I2)6					
	2.12	3-iodo-1-(4-nitrophenyl)prop-2-yn-1-one (4N)6					
3	Spe	ctral data7					
	3.1	1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one (US-I2)7					
	3.2	3-iodo-1-phenylprop-2-yn-1-one (US)8					
	3.3	1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (4F-I2)9					
	3.4	1-(4-fluorophenyl)-3-iodoprop-2-yn-1-one (4F)10					
	3.5	3-(3-(trimethylsilyl)propioloyl)benzonitrile (3CN-I2)11					
	3.6	3-(3-iodopropioloyl)benzonitrile (3CN)12					
	3.7	4-(3-(trimethylsilyl)propioloyl)benzonitrile (4CN-I2)13					
	3.8	4-(3-iodopropioloyl)benzonitrile (4CN)14					
	3.9	1-(3-nitrophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (3N-I2)15					
	3.10	3-iodo-1-(3-nitrophenyl)prop-2-yn-1-one (3N)16					
	3.11	1-(4-nitrophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (4N-I2)17					
	3.12	3-iodo-1-(4-nitrophenyl)prop-2-yn-1-one (4N)18					
4	Crys	Crystallographic information18					
5	References:						

General Remarks 1

reagents were purchased as reagent-grade and used without further Commercial purification. All solvents utilized in this study were purchased commercially as technical grade and used as is without further purification. Targets were synthesized by modified versions of previously reported synthetic routes as described next. Melting points were measured using a TA Instruments DSC Q20 differential scanning calorimeter. Nuclear magnetic resonance (NMR) data were collected using either a Bruker Ascend 400 MHz spectrometer. The residual solvent peak was used as the internal reference for ¹H and ¹³C NMR (CDCl₃: δ H=7.26ppm, $\delta C=77.16$ ppm). For the ¹⁹F NMR spectra, the fluorine peak was referenced against the residual solvent peak in its corresponding ¹H spectrum (δ H=7.26ppm). Target signals have been picked and labeled in all spectra, and have been integrated in ¹H spectra. IR stretches were obtained using a Nicolet 380 FT-IR spectrometer using an attenuated total reflection (ATR) technique and ZnSe as the crystal. Single crystal X-ray diffraction data were collected either using a Rigaku XtaLAB Synergy-S¹ (4CN, 3N, 4N) or Bruker Kappa APEX-II CCD² (US, 4F, 3CN) diffractometer. The structure was solved using Olex2³ with the SHELXT⁴ structure solution program using Intrinsic Phasing and refined with the SHELXL⁵ refinement package using Least Squares minimization. Computational calculations were carried out using Spartan '14 software package. The σ -hole potentials were determined from the optimized geometries at B3LYP/6-311++G** level of theory with iso=0.002 e/au. To determine the interactions energies, the target-ammonia dimer geometries were first optimized at MP2/6-311++G** level of theory, following which a single-point energy calculation was carried out at the same level of theory to determine the counterpoise corrected interaction energies (ΔE) defined as $\Delta E = E(dimer$ complex) - [E(target) + E(ammonia)].

Synthetic procedures 2

Targets were synthesized using modified versions of previously reported synthetic procedures.⁶⁻⁸

Anhydrous THF (120ml) was added to an evacuated round bottom (RB) flask and cooled to -78° C in a dry ice/acetone bath under N₂ flow, to which trimethylsilylacetylene (TMSA, 1.5 Eq, 15mmol, 2.25ml) was added followed by slow dropwise addition of n-BuLi (1.5 Eq, 15mmol, 6ml of 2.5M in Hexanes). The mixture was stirred for 15 minutes, following which the corresponding aldehyde (10mmol) was slowly added dropwise, after which the mixture was continued stirring at -78° C for 3 hours to form the first intermediate, correspondingly substituted 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ols (-II).

Since this intermediate was unstable, the subsequent Jones oxidation was carried out in-situ without isolating first intermediate. To the previous mixture still in cooling bath, acetone (60ml) was first added followed by $K_2Cr_2O_7$ (1.8 Eq, 12mmol, 3.530g), conc. H_2SO_4 (2ml) and water (60ml). After complete addition, RB is removed from the cooling bath and stirred at RT under N_2 flow for 3 hours to form the product. The crude mixture was first evaporated under reduced pressure to remove organic solvents, and the resulting aqueous mixture was extracted with chloroform (6X25ml), combined organic fractions dried with MgSO₄ and evaporated, and resulting residue was purified by column chromatography (Using hexanes, eluted with 5% EtOAc in Hexanes) to the give purified second intermediate, correspondingly substituted 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ones (-I2) in 73-82% yield.

Intermediate **-12** from the previous reaction was dissolved in acetonitrile (50ml) in a RB covered in aluminum foil, to which silver(I)fluoride (AgF, 10mmol, 1.2687g) and N-iodosuccinimide (NIS, 10mmol, 2.250g) was added and the mixture stirred under N₂ flow for 12 hours to form the product. The crude mixture was evaporated under reduced pressure and the residue purified by column chromatography (Using dichloromethane, eluted with 100% dichloromethane). The appropriate fraction was collected and washed with water (4X25ml), aqueous sodium thiosulfate (1X25ml), brine (1X25ml) and dried with MgSO₄ and evaporated to yield purified final targets, correspondingly substituted 3-iodo-1-phenylprop-2-yn-1-ones in 60-84% yield.

2.1 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one (US-I2)

Yield: 77.7%. Bp: 128-130°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.14 (d, J = 7.4 Hz, 2H), 7.68 – 7.54 (m, 1H), 7.48 (t, J = 7.0 Hz, 2H), 0.32 (s, 9H). ¹³C NMR (101 MHz, CDCl3) δ 177.80, 136.52, 134.29, 129.73, 128.67, 100.90, 100.69, -0.60. FTIR (cm⁻¹, ZnSe crystal): 2153 (C=C).

2.2 3-iodo-1-phenylprop-2-yn-1-one (US)

Yield: 71.9%. Mp:143-145°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.12 (d, J = 7.7 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl3) δ 176.52, 136.15, 134.57, 129.90, 128.78, 94.01, 20.62. FTIR (cm⁻¹, ZnSe crystal): 2144 (C=C)

2.3 1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (**4F-I2**)

Yield: 73.1%. Bp: 143-145°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.15 – 8.12 (m, 2H), 7.13 (dd, J = 9.5, 7.7 Hz, 2H), 0.29 (s, 9H). ¹³C NMR (101 MHz, CDCl3) δ 176.06, 167.82, 165.27, 133.06, 132.43, 132.33, 115.99, 115.77, 100.95, 100.57, -0.66. ¹⁹F NMR (376 MHz, CDCl3) δ - 103.09. FTIR (cm⁻¹, ZnSe crystal): 2153 (C=C).

2.4 1-(4-fluorophenyl)-3-iodoprop-2-yn-1-one (**4F**)

Yield: 83.7%. Mp: 96-98°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.14 (ddd, J = 7.9, 5.4, 2.1 Hz, 2H), 7.16 (td, J = 8.7, 2.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl3) δ 174.88, 168.03, 165.47, 132.67, 132.58, 116.21, 115.99, 93.75, 20.82. ¹⁹F NMR (376 MHz, CDCl3) δ -102.30. FTIR (cm⁻¹, ZnSe crystal): 2145 (C=C).

2.5 3-(3-(trimethylsilyl)propioloyl)benzonitrile (3CN-I2)

Yield: 80.0%. Mp: 47-49.0°C. ¹H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 8.31 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 0.30 (s, 9H). ¹³C NMR (101 MHz, CDCl3) δ ppm 175.26, 137.05, 136.89, 133.26, 133.15, 129.75, 117.73, 113.17, 103.02, 99.80, -0.79. FTIR (cm⁻¹, ZnSe crystal): 2152 (C=C), 2230 (C=N).

2.6 3-(3-iodopropioloyl)benzonitrile (**3CN**)

Yield: 72.5%. Mp: 126-128°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.36 (s, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl3) δ 174.12, 137.14, 136.80, 133.42, 133.38, 129.88, 117.66, 113.27, 93.15, 24.16. FTIR (cm⁻¹, ZnSe crystal): 2146 (C=C), 2239 (C=N).

2.7 4-(3-(trimethylsilyl)propioloyl)benzonitrile (4CN-I2)

Yield: 80.1%. Mp: 75-77°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.18 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 7.7 Hz, 2H), 0.29 (s, 8H). ¹³C NMR (101 MHz, CDCl3) δ 175.82, 139.09, 132.45, 129.84, 117.80, 117.18, 103.04, 100.02, -0.82. FTIR (cm⁻¹, ZnSe crystal): 2154 (C=C), 2229 (C=N).

2.8 4-(3-iodopropioloyl)benzonitrile (4CN)

Yield: 66.9%. Decomp: 176-178°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.21 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl3) δ 174.73, 138.93, 132.62, 130.11, 117.82, 117.53, 93.49, 23.71. FTIR (cm⁻¹, ZnSe crystal): 2147 (C=C), 2231 (C=N).

2.9 1-(3-nitrophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (**3N-I2**)

Yield: 81.5%. Mp: 55-57°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.94 (s, 1H), 8.44 (t, J = 7.3 Hz, 1H), 7.71 (t, J = 8.0 Hz, 1H), 0.34 (s, 9H). ¹³C NMR (101 MHz, CDCl3) δ 175.22, 148.49,

137.74, 134.79, 130.03, 128.33, 124.65, 103.59, 99.93, -0.71. FTIR (cm⁻¹, ZnSe crystal): 2148 (C≡C), 1531 (-NO₂).

2.10 3-iodo-1-(3-nitrophenyl)prop-2-yn-1-one (**3N**)

Yield: 60.0%. Mp: 106-108°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.88 (s, 1H), 8.44 (dd, J = 12.3, 8.0 Hz, 2H), 7.72 (t, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl3) δ 173.99, 148.50, 137.39, 135.08, 130.17, 128.58, 124.53, 93.31, 23.99. FTIR (cm⁻¹, ZnSe crystal): 2142 (C=C), 1527 (-NO₂).

2.11 1-(4-nitrophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (**4N-I2**)

Yield: 73.6%. Mp: 96-98°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.30 (q, J = 8.9 Hz, 4H), 0.33 (s, 7H). ¹³C NMR (101 MHz, CDCl3) δ 175.68, 150.99, 140.60, 130.62, 123.91, 103.60, 100.19, 83.02, -0.70. FTIR (cm⁻¹, ZnSe crystal): 2154 (C=C), 1523 (-NO₂).

2.12 3-iodo-1-(4-nitrophenyl)prop-2-yn-1-one (4N)

Yield: 63.6%. Decomp: 189-191°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.37 – 8.25 (m, 4H). ¹³C NMR (101 MHz, CDCl3) δ 174.46, 151.16, 140.34, 130.82, 124.04, 93.65, 23.78. FTIR (cm⁻¹, ZnSe crystal): 2146 (C=C), 1506 (-NO₂).

3 Spectral data

3.1 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one (US-I2)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, J = 7.4 Hz, 1H), 7.68 – 7.54 (m, 1H), 7.48 (t, J = 7.0 Hz, 1H), 0.32 (s, 3H).

3.2 3-iodo-1-phenylprop-2-yn-1-one (US)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 7.7 Hz, 2H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H).

S9

3.4 1-(4-fluorophenyl)-3-iodoprop-2-yn-1-one (4F)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (ddd, J = 7.9, 5.4, 2.1 Hz, 2H), 7.16 (td, J = 8.7, 2.0 Hz, 2H).

S10

3.5 3-(3-(trimethylsilyl)propioloyl)benzonitrile (**3CN-I2**)

¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.31 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 0.30 (s, 9H).

f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) δppm 175.26, 137.05, 136.89, 133.26, 133.15, 129.75, 117.73, 113.17, 103.02, 99.80, -0.79.

3.6 3-(3-iodopropioloyl)benzonitrile (**3CN**)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.36 (s, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.64 (t, *J* = 7.8 Hz, 1H).

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) δ 174.12, 137.14, 136.80, 133.42, 133.38, 129.88, 117.66, 113.27, 93.15,

3.7 4-(3-(trimethylsilyl)propioloyl)benzonitrile (4CN-I2)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, *J* = 7.4 Hz, 2H), 7.76 (d, *J* = 7.7 Hz, 2H), 0.29 (s, 8H).

3.9 1-(3-nitrophenyl)-3-(trimethylsilyl)prop-2-yn-1-one (**3N-I2**)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.94 (s, 1H), 8.44 (t, J = 7.3 Hz, 1H), 7.71 (t, J = 8.0 Hz, 1H), 0.34 (s, 9H).

3.10 3-iodo-1-(3-nitrophenyl)prop-2-yn-1-one (3N)

3.12 3-iodo-1-(4-nitrophenyl)prop-2-yn-1-one (4N)

4 Crystallographic information

Table S1. Crystallographic information of targets explored in this study

Target code	US	4F	3CN	4CN	3N	4N
CCDC	2110111	2110113	2110114	2110094	2110098	2110093
Number						
Systematic	3-iodo-1-	1-(4-	1-(3-	1-(4-	1-(3-	1-(4-
name	phenylprop-	fluorophenyl)	cyanophenyl)	cyanophenyl)	nitrophenyl)-	nitrophenyl)-
	2-yn-1-one	-3-iodoprop-	-3-iodoprop-	-3-iodoprop-	3-iodoprop-2-	3-iodoprop-2-
		2-yn-1-one	2-yn-1-one	2-yn-1-one	yn-1-one	yn-1-one
Formula	C ₉ H ₅ IO	C ₉ H ₄ FIO	C ₁₀ H ₄ INO	C ₁₀ H ₄ INO	C ₉ H ₄ INO ₃	C ₉ H ₄ INO ₃
moiety						
Empirical	C ₉ H ₅ IO	C ₉ H ₄ FIO	C ₁₀ H ₄ INO	C ₁₀ H ₄ INO	C ₉ H ₄ INO ₃	C ₉ H ₄ INO ₃
formula						
Molecular	256.04	274.03	281.04	281.04	301.04	301.04
weight						

Solvent used	Dioxane	Dioxane	Dioxane	Dioxane	THF	Dioxane
for						
crystallization						
Color, Habit	Colorless,	Colorless,	Colorless,	Colorless,	Clear pale	Clear light
	Chunk	Block	Thin plate	Plate	colorless,	colorless,
					Block	Plate
Crystal system	Monoclinic	Tetragonal	Tetragonal	Monoclinic	Triclinic	Monoclinic
Space group, Z	$P2_{1}/c, 4$	I-4, 8	P -1, 2	$P2_{1}/c, 4$	P -1, 4	$P2_{1}/c, 4$
<i>a</i> , Å	10.0763(2)	19.4398(5)	5.6138(3)	4.06532(16)	6.8676(9)	4.0639(1)
<i>b</i> , Å	11.2448(2)	19.4398(5)	7.8625(4)	24.0246(11)	11.0423(10)	23.333(1)
<i>c</i> , Å	7.2619(2)	5.05770(10)	11.1133(5)	9.7176(4)	13.0715(11)	10.0221(4)
α, °	90	90	104.330(2)	90	82.581(7)	90
β, °	91.0130(10)	90	96.117(2)	96.002(4)	74.932(9)	93.341(3)
γ, °	90	90	94.399(3)	90	77.837(9)	90
Volume, Å ³	822.69(3)	1911.33(11)	469.84(4)	943.89(7)	932.79(18)	948.71(6)
Density, g/cm ³	2.067	1.905	1.987	1.978	2.144	2.108
<i>T</i> , °K	200.(2)	200.(2)	200.(2)	100.02(19)	100.15	170.01(10)
Crystal size,	0.065×0.055	$0.11 \times 0.1 \times$	0.030 x 0.080	0.036 X	0.09 X 0.11	0.069 X
min x mid x	× 0.04	0.1	x 0.135	0.127 X	X 0.12	0.129 X
max				0.153		0.151
X-ray	1.54178	1.54184	1.54184	1.54184	0.71073	0.71073
wavelength, Å						
μ , mm ⁻¹	30.056	26.082	26.425	26.308	3.410	3.353
Trans min /	0.25 / 0.38	0.16 / 0.18	0.13 / 0.50	0.43858 /	0.647 / 1.00	0.41985 /
max				1.00		1.00
θ_{min} , °	4.39	4.55	4.14	3.680	2.586	2.21
θ_{max} , °	69.83	70.32	70.02	72.120	26.369	33.58
Reflections						
collected	5730	4548	6165	2731	10762	11750
independent	1501	1611	1643	2731	3815	3206
observed	1416	1557	1566	2644	3414	2656
R _{int}	0.0270	0.0538	0.0491	0.095	0.0415	0.0262
Threshold	$> 2\sigma(I)$	$> 2\sigma(I)$	$> 2\sigma(I)$	$> 2\sigma(I)$	$> 2\sigma(I)$	$> 2\sigma(I)$
expression						
No. parameters	100	111	118	119	489	128
No. restraints	0	0	0	0	478	0
R ₁ (observed)	0.0265	0.0390	0.0392	0.0429	0.0539	0.0345
wR_2 (all)	0.0687	0.1006	0.1053	0.1271	0.1193	0.0835
Goodness of fit	1.061	1.028	1.041	1.105	1.106	1.0409
(all)						
$\rho_{\text{max}}, \rho_{\text{min}}, e \text{ Å}^{-3}$	1.04/-1.19	1.19/-1.26	1.144, -0.992	1.532, -0.717	1.485, -1.378	1.8023, -
,						1.3657
Completeness	0.963	0.967	0.922	0.997	0.995	0.8529
to 2θ limit						

5 References:

1. We acknowledge the NSF-MRI grant CHE-2018414, which was used to purchase the single-crystal X-ray diffractometer and associated software employed in this study.

2. We acknowledge the NSF-MRI grant CHE-0923449, which was used to purchase the single-crystal X-ray diffractometer and associated software employed in this study

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *Journal of Applied Crystallography* **2009**, *42* (2), 339-341.

4. Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallographica Section A* **2015**, *71* (1), 3-8.

5. Sheldrick, G., Crystal structure refinement with SHELXL. *Acta Crystallographica Section C* **2015**, *71* (1), 3-8.

6. He, Y.; Xie, Y.-y.; Wang, Y.-c.; Bin, X.-m.; Hu, D.-c.; Wang, H.-s.; Pan, Y.-m., TEMPOcatalyzed synthesis of 5-substituted isoxazoles from propargylic ketones and TMSN3. *RSC Advances* **2016**, *6* (64), 58988-58993.

7. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L., 13. Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols. *Journal of the Chemical Society (Resumed)* **1946**, (0), 39-45.

8. Hofmeister, H.; Annen, K.; Laurent, H.; Wiechert, R., A Novel Entry to 17α -Bromo- and 17α -lodoethynyl Steroids. *Angewandte Chemie International Edition in English* **1984**, *23* (9), 727-729.