Supplementary Information

One-step fabrication of nitrogen-doped laser-induced graphene derived from melamine/polyimide for enhanced flexible supercapacitors

Shuai Han,^{ab‡} Cui Liu,^{a‡} Nian Li,*^a Shudong Zhang,^a Yanping Song,^{ab} Liqing Chen,^{ab} Min Xi,^a Xinling Yu,^a Wenbo Wang,^{ab} Mingguang Kong,^a and Zhenyang Wang*^a

^a Institute of Solid State Physics, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.

^b Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China.

‡ These authors contributed equally to this work.

Corresponding Author

- * Nian Li. E-mail: <u>linian@issp.ac.cn</u>
- * Zhenyang Wang. E-mail: <u>zywang@iim.ac.cn</u>

Calculations of electrochemical performance:

1. The areal specific capacitance of EIG electrodes and EIG-MSC were calculated from galvanostatic charge/discharge (GCD) curves as follow equation:

$$C_A = \frac{I\Delta t}{A\Delta U} \tag{1}$$

where C_A is the areal specific capacitance (mF cm⁻²), *I* is the discharge current (mA), Δt is the discharge time (s), ΔU is the applied potential window (V), *A* is the area of electrodes (cm²).

2. The areal energy density (E_A , μ Wh·cm⁻²), areal power density (P_A , mW·cm⁻²), were calculated using the following equations, respectively:

$$E_A = \frac{1}{2} \times C_A \times \frac{(\Delta U)^2}{3600} \tag{2}$$

$$P_A = 3600 \times \frac{E_A}{\Delta t} \tag{3}$$

where C_A is the areal specific capacitance (mF cm⁻²), ΔU (V) is the potential window, and Δt is the discharge time (s).

Supporting Figures

Fig. S1 (a) The selection of smaller holes on the pore wall of three-dimensional graphene network. (b) The histogram of pore diameter distribution. (c) Statistics of pore diameter.

Fig. S2 (a-c) The top view SEM images of LIG at different magnifications. (d) The corresponding cross-sectional SEM image of LIG.

Fig. S2 shows the SEM images of pure undoped LIG under different magnifications. Notably, different from N-LIG, there are few smaller pores on the pore wall of the graphene sheet network in LIG.

Fig. S3 TEM images of (a-c) LIG, and (d-f) N-LIG.

Fig. S3 reveals the TEM images of LIG and N-LIG. It can be seen that both LIG and N-LIG possess the thin layer morphology.

Fig. S4 HRTEM images of (a) LIG, and (b) N-LIG. The scale bars of insets are 2 nm.

As shown in HRTEM images (Fig. S4), there is no distinct difference in the number of carbon layers between LIG and N-LIG. The insets of Fig. S4 show the small number of local interlayer wrinkles of graphene, proving that both of them possess few-layer structure (such as 3 layers).

Fig. S5 Schematic diagram of the preparation and structure of laser-induced graphite (LIG) and nitrogen-doped laser-induced graphene (N-LIG).

Fig. S6 (a) The elemental mapping results and (b) EDS spectrum in SEM of LIG sample. (The scale bar in the figure is $20 \ \mu m$).

Fig. S7 (a) The elemental mapping results and (b) EDS spectrum in SEM of N-LIG sample. (The scale bar in the figure is $20 \ \mu m$).

Fig. S8 (a) The elemental mapping results and (b) EDS spectrum in TEM of LIG sample.

Fig. S9 (a) The elemental mapping results and (b) EDS spectrum in TEM of N-LIG sample.

Fig. S10 (a-b) The STEM images of LIG. (c) Location of EELS spectrum image (SI). (d) EELS SI of LIG. (e-f) Specifical EELS spectrum of LIG. (g) Elemental distribution of LIG in EELS SI.

Fig. S11 (a-b) The STEM images of N-LIG. (c) Location of EELS spectrum image (SI). (d) EELS SI of N-LIG. (e-f) Specifical EELS spectrum of N-LIG. (g) Elemental distribution of N-LIG in EELS SI.

Fig. S12 (a) XPS spectra of different LIG and N-LIG samples obtained from composite films with different melamine-adding amounts in PI. (b) The corresponding atomic proportion of nitrogen of different samples.

Fig. S12 shows the XPS spectra and nitrogen atomic proportion of different LIG and N-LIG samples. In Fig. S12a, it can be seen that the N1s peaks of different as-prepared N-LIG samples are gradually enhanced with the increase of the melamine-adding amounts (0 wt%, 1 wt%, 2 wt%, 4 wt%, 6 wt%) in PI. Moreover, as shown in Fig. S12b, the atomic proportion of nitrogen in N-LIG gradually increases correspondingly (N atomic: 0.4%, 1.47%, 3.93%, 8.44%, 9.35%). Remarkably, when the melamine-adding amounts in PI increases from 4 wt% to 6 wt%, the increasing extent of nitrogen content in the obtained samples slowed down (only from 8.44% to 9.35%).

Fig. S13 SAED results of (a-b) LIG, and (c-d) N-LIG.

Fig. S14 Pore distribution of laser-induced graphite (LIG) and nitrogen-doped laser-induced graphene (N-LIG).

Fig. S15 The digital photos of the flexible N-LIG electrode obtained on melamine/polyimide film with 6 wt% compounding amounts of melamine.

Fig. S16 The digital photo of the melamine/polyimide composite film with 8 wt% compounding amounts of melamine.

Fig. S17 The CV curves of N-LIG electrode prepared by melamine/polyimide composite film with melamine compounding amounts (a-c, 1 wt%, 2 wt%, 4 wt%).

Fig. S18 The GCD plots of N-LIG electrode prepared by melamine/polyimide composite film with melamine compounding amounts (a-c, 1 wt%, 2 wt%, 4 wt%).

Fig. S19 GCD plots of N-LIG MSC at high current densities of 1.0 and 2.0 mA cm⁻².

Supporting Table

 Table S1. A comparison of capacitive performance of N-LIG MSC fabricated in the present

 work with other graphene-based MSCs.

MSC material	Method	Electrolyte	Condition	C _A (mF/cm²)	Energy density (µWh/cm²)	Ref.
N-LIG	Laser induction	PVA/H ₂ SO ₄	0.05 mA cm ⁻²	35.20	4.89	This work
LIG	Laser induction	PVA/H ₂ SO ₄	0.02 mA cm^{-2}	>9.00	1.25	[1]
s-LIG	Laser induction	PVA/H ₂ SO ₄	0.05 mA cm^{-2}	5.00	0.69	[2]
Fs-LIG	Laser induction	PVA/H ₂ SO ₄	0.10 mA cm ⁻²	22.40	3.11	[3]
Air-plasma treated LIG	Laser induction	PVA/H ₂ SO ₄	0.02 mA cm^{-2}	28.50	3.96	[4]
Lignin/PVA-based LIG	Laser induction	PVA/H ₂ SO ₄	0.05 mA cm^{-2}	25.10	3.49	[5]
SPEEK-based LIG	Laser induction	1 M Na ₂ SO ₄	0.20 mA cm^{-2}	1.90	0.39	[6]
LIAG/KC-35	Laser induction	PVA/H ₃ PO ₄	0.05 mA cm^{-2}	30.06	4.01	[7]
N-d-LIG	Laser induction	PVA/H ₂ SO ₄	0.05 mA cm^{-2}	20.80	2.89	[8]
B-LIG	Laser induction	PVA/H ₂ SO ₄	0.05 mA cm^{-2}	16.50	2.29	[9]
N-doped LIG with PEDOT	Laser induction	PAAK/KOH	0.05 mA cm^{-2}	0.79	0.07	[10]
MoS ₂ -LIG	Laser induction	PVA/H ₂ SO ₄	0.10 mA cm ⁻²	16.20	2.25	[11]
N-doped rGO	Screen printing	PVA/H ₃ PO ₄	0.02 mA cm^{-2}	3.40	0.30	[12]

References

- 1. Z. Peng, J. Lin, R. Ye, E. L. G. Samuel and J. M. Tour, ACS Applied Materials & Interfaces, 2015, 7, 3414-3419.
- K. Y. Kim, H. Choi, C. V. Tran and J. B. In, *Journal of Power Sources*, 2019, 441, 227199.
- S. Wang, Y. Yu, R. Li, G. Feng, Z. Wu, G. Compagnini, A. Gulino, Z. Feng and A. Hu, Electrochimica Acta, 2017, 241, 153-161.
- 4. J. Cai, C. Lv and A. Watanabe, *Nano Energy*, 2016, **30**, 790-800.
- W. Zhang, Y. Lei, F. Ming, Q. Jiang, P. M. F. J. Costa and H. N. Alshareef, Advanced Energy Materials, 2018, 8, 1801840.
- A. Lamberti, M. Serrapede, G. Ferraro, M. Fontana, F. Perrucci, S. Bianco, A. Chiolerio and S. Bocchini, 2D Materials, 2017, 4, 035012.
- H. Liu, Y. Xie, J. Liu, K.-s. Moon, L. Lu, Z. Lin, W. Yuan, C. Shen, X. Zang, L. Lin, Y. Tang and C.-P. Wong, *Chemical Engineering Journal*, 2020, 393, 124672.
- 8. M. Khandelwal, C. V. Tran, J. Lee and J. B. In, *Chemical Engineering Journal*, 2022, **428**, 131119.
- Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li, P. R. Smalley, J. Lin and J. M. Tour, ACS Nano, 2015, 9, 5868-5875.
- 10. W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li and J. Wang, *Small*, 2018, 14, 1702249.
- S. Wang, Y. Yu, S. Luo, X. Cheng, G. Feng, Y. Zhang, Z. Wu, G. Compagnini, J. Pooran and A. Hu, *Applied Physics Letters*, 2019, **115**, 083904.
- S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao and X. Zhao, Journal of Materials Chemistry A, 2014, 2, 18125-18131.