Electronic Supplementary Information for:

Multi-Component Crystals Containing Urea:

Mechanochemical Synthesis and Characterization

by ³⁵Cl Solid-State NMR Spectroscopy and DFT Calculations

Cameron S. Vojvodin,^{1,2} Sean T. Holmes,^{1,2} Lara K. Watanabe,³

Jeremy M. Rawson,³ Robert W. Schurko^{1,2*}

¹ Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306
² National High Magnetic Field Laboratory, Tallahassee, FL 32310

³ Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4

*Author to whom correspondence should be addressed.

E-mail: <u>rschurko@fsu.edu</u>

Supplementary Information

Table of Contents

Figure S1. Experimental PXRD patterns for (A, purple) NH ₄ Cl, (B, green) urea, (C, red) NPr ₄ Cl, and (D, blue) NEt ₄ Cl·H ₂ O, as well as simulated PXRD patterns based on previously reported or novel crystal structures (black). ^{109,111}
Table S1. Experimental conditions used in ball milling experiments ^{a} for the syntheses of allMCCs described in this work. All reactions were scaled to ca . 200 mg of total solids
Supplement S1. Euler Angle Conventions
Figure S2. Experimental ¹ H \rightarrow ¹³ C{ ¹ H} CP/MAS spectra for (A) NEt ₄ Cl·H ₂ O and (B) NPr ₄ Cl acquired at 14.1 T ($\nu_{rot} = 6$ kHz). Spinning sidebands are denoted by asterisks (*)7
Figure S3. Experimental ¹ H \rightarrow ¹³ C{ ¹ H} CP/MAS spectra of (A) NH ₄ Cl:Urea, (B) NEt ₄ Cl:2Urea, (C) NEt ₄ Cl:Urea · 2H ₂ O, (D) NPr ₄ Cl:2Urea, and (E) NPr ₄ Cl:3Urea acquired at 14.1 T (v _{rot} = 6 kHz). Spinning sidebands are denoted by asterisks (*)
Table S2. Summary of experimental ¹³ C chemical shifts.
Figure S4. Images of the unit cells of (A) NH ₄ Cl:Urea and (B) NPr ₄ Cl10
Table S3. Crystal structure details for NH4Cl:Urea and NPr4Cl11
Table S4. Experimental ³⁵ Cl EFG and CS tensor parameters for NEt ₄ Cl·H ₂ O. ^{<i>a</i>} 12
Figure S5. Experimental PXRD patterns for (A, purple) NPr ₄ Cl:3Urea, (B, green) NEt ₄ Cl:Urea·2H ₂ O, (C, red) NPr ₄ Cl:2Urea, and (D, blue) NEt ₄ Cl:2Urea, as well as simulated PXRD patterns based on previously-reported crystal structures (black). ^{112–114}
Table S5. Summary of crystallographic details for all NR ₄ Cl:xUrea·yH ₂ O MCCs an precursors discussed in this work. 14
Figure S6. Experimental PXRD patterns for NH ₄ Cl:Urea at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NH ₄ Cl, and NH ₄ Cl:Urea are also shown15
Figure S7. Experimental PXRD patterns for $NEt_4Cl:2Urea$ at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, $NEt_4Cl:H_2O$, and $NEt_4Cl:2Urea$ are also shown16
Figure S8. Experimental PXRD patterns for NEt ₄ Cl:Urea·2H ₂ O at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NEt ₄ Cl·H ₂ O, and NEt ₄ Cl:Urea·2H ₂ O are also shown
Figure S9. Experimental PXRD patterns for NPr ₄ Cl:2Urea at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NPr ₄ Cl, and NPr ₄ Cl:2Urea are also shown

Figure S10. Experimental PXRD patterns for NPr ₄ Cl:3Urea at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NPr ₄ Cl, and NPr ₄ Cl:3Urea are also shown
Figure S11. PXRD patterns of the mechanochemically synthesized product of 1 molar eq. urea, 1 molar eq. NEt ₄ Cl·H ₂ O, and 0 (A), 1 (B), and 2 (C) molar eq. H ₂ O20
Supplement S2. Definition of the RMS EFG Distance
Figure S12. Correlations between calculated and experimental principal values of 35 Cl chemical shift tensors for tetraethyl and tetrapropyl NR ₄ Cl: <i>x</i> Urea· <i>y</i> H ₂ O MCCs. Calculations are shown for XRD-derived structures (blue) and DFT-D2* structures (red)
Supplement S3. Definition of the RMS CS Distance
Figure S13. Experimental and simulated PXRD patterns of products from MS and crystallization from solution, as well as simulated PXRD patterns for NH ₄ Cl:Urea. Both slow evaporation (purple) and ball milling (brown) products from preparations of NH ₄ Cl:Urea are compared to simulations of the three reported crystal structures, black (URAMCL), red (URAMCL01), and green (URAMCL02), ^{123–125} and our <i>Pmna</i> crystal structure (blue)
Table S6. Calculated ³⁵ Cl EFG tensor parameters for all available structures of NH ₄ Cl:Urea, asrefined at the DFT-D2* level
Figure S14. ³⁵ Cl EFG tensor orientations for NH ₄ Cl:Urea obtained from model structures from our crystal structure that were geometry optimized at the DFT-D2* level. The H···Cl ⁻ hydrogen bonds (< 2.6 Å) are shown in black. The orientations of the three principal components of the EFG tensor (V_{11} , V_{22} , and V_{33}) are shown in yellow
Table S7. Acquisition parameters for all ³⁵ Cl{ ¹ H} Hahn-echo SSNMR spectra
Table S8. Acquisition parameters for all ${}^{1}H \rightarrow {}^{13}C{}^{1}H$ CP/MAS SSNMR spectra

Figure S1. Experimental PXRD patterns for (A, purple) NH_4Cl , (B, green) urea, (C, red) NPr_4Cl , and (D, blue) $NEt_4Cl \cdot H_2O$, as well as simulated PXRD patterns based on previously reported or novel crystal structures (black).^{109,111}

Material	NR ₄ Cl ^b	Urea	Water	Water	Frequency Op	otimized Milling Time
	(mol. eq.)	(mol. eq.)	(mol. eq.)	(µL)	(Hz)	(min)
NEt ₄ Cl:2Urea	1	2	0	0	30	1
NEt ₄ Cl:Urea · 2H ₂ O	1	1	0	0	30	40
NEt ₄ Cl:Urea · 2H ₂ O	1	1	1	18	30	40
NEt ₄ Cl:Urea · 2H ₂ O	1	1	2	36	30	40
NPr ₄ Cl:2Urea	1	2	0	0	30	1
NPr ₄ Cl:3Urea	1	3	0	0	30	1
NH₄Cl:Urea	1	1	0	0	30	10

Table S1. Experimental conditions used in ball milling experiments^a for the syntheses of all MCCs described in this work. All reactions were scaled to *ca*. 200 mg of total solids.

^{*a*} All five MCCs were prepared mechanochemically with a constant milling frequency of 30 Hz and various milling durations. After each milling duration, a sample of the product was collected for PXRD and comparison to simulations of the educts and final products to determine the optimal milling time for each reaction.

^{*b*} R = H, Et, or *n*-Pr.

Supplement S1. Euler Angle Conventions. There are numerous discrepant Euler angle conventions for describing the relative orientation of chemical shift and EFG tensors that are used in various software packages for simulating solid-state NMR spectra, as well as for comparing relative orientations of these tensors obtained from quantum chemical computations. This is further exacerbated by inconstancies in how the relative magnitudes of the principal components of these tensors are defined, as well as variation in related conventions for describing anisotropy and reduced anisotropy for the CS tensor, and the asymmetry parameter of the EFG tensor.

For the purposes of the current work, we have utilized ssNake 1.3 to obtain precision fits of our experimental data, where the Euler angles follow the ZX'Z'' convention. In order to make direct comparisons with relative CS and EFG tensor orientations extracted from CASTEP output files using EFGShield software, which uses the ZY'Z'' convention, we have converted the Euler angles from ssNake to the ZY'Z'' convention, according to:

$\alpha(ssNake) = \gamma(WSOLIDS) + 90^{\circ}$ $\beta(ssNake) = \beta(WSOLIDS)$ $\gamma(ssNake) = \alpha(WSOLIDS)$

Furthermore, we verified the equivalence of these sets of Euler angles with a second set of simulations using WSOLIDS software, which is well-documented in terms of its use of the ZY'Z'' convention and the aforementioned CS and EFG tensor parameters.

Figure S2. Experimental ¹H \rightarrow ¹³C{¹H} CP/MAS spectra for (A) NEt₄Cl·H₂O and (B) NPr₄Cl acquired at 14.1 T (v_{rot} = 6 kHz). Spinning sidebands are denoted by asterisks (*).

Figure S3. Experimental ¹H \rightarrow ¹³C{¹H} CP/MAS spectra of (A) NH₄Cl:Urea, (B) NEt₄Cl:2Urea, (C) NEt₄Cl:Urea · 2H₂O, (D) NPr₄Cl:2Urea, and (E) NPr₄Cl:3Urea acquired at 14.1 T (v_{rot} = 6 kHz). Spinning sidebands are denoted by asterisks (*).

Sample	Urea (ppm)	CH ₂ (ppm)	CH ₃ (ppm)
Urea	162.7	-	-
NEt ₄ Cl·H ₂ O	n/a	48.2, 53.2	7.3, 7.8, 8.9, 9.7, 10.8, 11.2, 11.8, 12.4
NPr ₄ Cl	n/a	15.9, 60.2	13.3
NH ₄ Cl:Urea	163.3	n/a	n/a
NEt ₄ Cl:2Urea	163.8	52.3	7.8
NEt ₄ Cl:Urea · 2H ₂ O	163.7	53.0	7.9
NPr ₄ Cl:2Urea	164.1	60.1, 62.1	10.9, 16.1
NPr ₄ Cl:3Urea	163.9	60.7, 62.1	10.8, 15.9

Table S2. Summary of experimental ¹³C chemical shifts.

Figure S4. Images of the unit cells of (A) NH₄Cl:Urea and (B) NPr₄Cl.

Material	NH ₄ Cl:Urea	NPr ₄ Cl
Empirical formula	CH ₈ ClN ₃ O	$C_{12}H_{28}ClN$
Formula weight (Da)	113.55	221.81
Crystal system	Orthorhombic	Tetragonal
Space group	Pmna	74
a (Å)	7.8835(4)	8.0736(8)
<i>b</i> (Å)	17.0669(8)	8.0736(8)
<i>c</i> (Å)	8.0099(3)	10.6690(10)
α, β, γ (°)	90	90
Cell volume (Å ³)	1077.71(8)	695.44(16)
Calculated density (g cm ⁻³)	1.3996	1.0593
Temperature (K)	170(2)	150(2)
Cell formula units, Z	8	1
Cell asymmetric unit, Z	1	0.25
No. of unique reflections	1294	802
Final R_1 values $(I > 2\sigma(I))$	0.0312	0.0225
Final $wR(F^2)$ values (all data) ^{<i>a</i>}	0.0815	0.0573

Table S3. Crystal structure details for NH₄Cl:Urea and NPr₄Cl.

^{*a*} $wR(F^2)$ is the weighted *R* factor (*wR*) based on the intensities (*F*²)

Material (Cl Site)		C_{Q}	η _Q	δ_{iso}	Ω	κ	α	β	γ
	Site #	(MHz)		(ppm)	(ppm)		(°)	(°)	(°)
NEt ₄ Cl·H ₂ O	1	1.35(7)	0.71(6)	51(1)	24(6)	0.87(10)	n/a ^b	28(5)	77(15)
	2	2.51(4)	0.68(5)	68(1)	8(6)	0.44(10)	n/a	0(15)	69(24)
	3	1.18(5)	0.77(4)	60(1)	25(5)	0.10(6)	63(20)	31(20)	63(18)

Table S4. Experimental ³⁵Cl EFG and CS tensor parameters for NEt₄Cl·H₂O.^{*a*}

^{*a*} A minimum of three overlapping patterns is required to fit these spectra, although ¹³C CPMAS spectra suggest that a many as eight magnetically distinct chlorine sites could be present (see **Figure S2**).

^b This parameter has little-to-no effect on the simulated ³⁵Cl SSNMR pattern.

Figure S5. Experimental PXRD patterns for (A, purple) NPr₄Cl:3Urea, (B, green) NEt₄Cl:Urea·2H₂O, (C, red) NPr₄Cl:2Urea, and (D, blue) NEt₄Cl:2Urea, as well as simulated PXRD patterns based on previously-reported crystal structures (black).^{112–114}

Material	CSD Code	Space Group	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)
NH ₄ Cl	n/a	Pm ³ m	3.868	3.868	3.868
NPr ₄ Cl	This work	IĪ4	8.0736(8)	8.0736(8)	10.669(1)
NEt ₄ Cl·H ₂ O	ETAMCM01	C2/c	13.4626(3)	14.1128(3)	12.1080(2)
NEt ₄ Cl:2Urea	PAMLAQ	$P2_{1}/c$	10.492(6)	14.954(8)	10.335(6)
NEt ₄ Cl:Urea·2H ₂ O	GILBAE	$P2_1/n$	7.505(2)	14.556(4)	14.453(3)
NPr ₄ Cl:2Urea	NISPAG	$P2_1/n$	9.839(2)	15.160(3)	14.583(3)
NPr ₄ Cl:3Urea	NISPEK	$P2_{1}/c$	9.866(2)	16.274(3)	15.277(3)
NH ₄ Cl:Urea	URAMCL	Pcnm	8.03	17.08	7.81
NH ₄ Cl:Urea	URAMCL01	Pmna	7.9232(10)	17.1207(17)	8.0716(11)
NH ₄ Cl:Urea	URAMCL02	Pmna	7.909(3)	17.113(6)	8.049(3)
NH ₄ Cl:Urea	This work	Pmna	7.8835(4)	17.0669(8)	8.0099(3)

Table S5. Summary of crystallographic details for all $NR_4Cl:xUrea \cdot yH_2O$ MCCs an precursors discussed in this work.

Figure S6. Experimental PXRD patterns for NH_4Cl :Urea at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NH_4Cl , and NH_4Cl :Urea are also shown.

Figure S7. Experimental PXRD patterns for NEt₄Cl:2Urea at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NEt₄Cl: H_2O , and NEt₄Cl:2Urea are also shown.

Figure S8. Experimental PXRD patterns for NEt₄Cl:Urea \cdot 2H₂O at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NEt₄Cl:H₂O, and NEt₄Cl:Urea \cdot 2H₂O are also shown.

Figure S9. Experimental PXRD patterns for NPr₄Cl:2Urea at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NPr₄Cl, and NPr₄Cl:2Urea are also shown.

Figure S10. Experimental PXRD patterns for NPr₄Cl:3Urea at 1, 5, 10, 20, 30, and 40 minutes with a constant milling frequency of 30 Hz. Optimal milling time is marked with an asterisk (*). Simulated reference PXRD patterns for urea, NPr₄Cl, and NPr₄Cl:3Urea are also shown.

Figure S11. PXRD patterns of the mechanochemically synthesized product of 1 molar eq. urea, 1 molar eq. $NEt_4Cl\cdot H_2O$, and 0 (A), 1 (B), and 2 (C) molar eq. H_2O .

Supplement S2. Definition of the RMS EFG Distance. The EFG distance and RMS EFG distance are metrics introduced by our laboratory [*J. Phys. Chem. A* 2020, *124*, 10312-10323.] for assessing the agreement between experimental and calculated EFG tensors, and is used in a similar manner to the chemical shift distance and RMS chemical shift difference introduced by Alderman et al. [*J. Magn. Reson.* 1993, *101*, 188-197]. We assess the agreement between an experimental ($V_{kk}^{m,exp}$, k = 1, 2, 3) and calculated ($V_{kk}^{m,calc}$) EFG tensor at nucleus *m* using the EFG distance (Γ_m) metric. The EFG distance quantifies the degree of similarity between two sets of the principal components of EFG tensors (here, one experimental and one computed set of tensors) using a single scalar value (in a.u.):

$$\begin{split} \Gamma_m &= \frac{eQ}{h} \Big(\frac{1}{15} \Big[3\Delta_{11}^2 + 3\Delta_{22}^2 + 3\Delta_{33}^2 + 2\Delta_{11}\Delta_{22} + 2\Delta_{11}\Delta_{33} + 2\Delta_{22}\Delta_{33} \Big] \Big)^{1/2} \,. \\ \Delta_{kk} &= \left| \left| V_{kk}^{m,calc} \right| - \left| V_{kk}^{m,exp} \right| \right| \,. \end{split}$$

In the above expressions, *e* is the elementary charge, *h* is Planck's constant, and *Q* is the nuclear quadrupole moment $[Q(^{14}N) = 2.044 \text{ fm}^2; Q(^{35}Cl) = -8.165 \text{ fm}^2]$. A root-mean-square EFG distance for an ensemble of *M* EFG tensors (Γ_{RMS}) is determined by the following expression:

$$\Gamma_{RMS} = \left(\frac{1}{M}\sum_{m}\Gamma_{m}^{2}\right)^{1/2}.$$

Figure S12. Correlations between calculated and experimental principal values of ³⁵Cl chemical shift tensors for tetraethyl and tetrapropyl NR₄Cl:*x*Urea·*y*H₂O MCCs. Calculations are shown for XRD-derived structures (blue) and DFT-D2* structures (red).

Supplement S3. Definition of the RMS CS Distance. The chemical shift distance [J. Magn. Reson. 1993, 101, 188-197] for atom v, d_v , is used to compare a calculated and experimental chemical shift tensors:

$$d_{v} = \left(\frac{1}{15} \left[3\left(\delta^{v,calc}_{11} - \delta^{v,exp}_{11}\right)^{2} + 3\left(\delta^{v,calc}_{22} - \delta^{v,exp}_{22}\right)^{2} + 3\left(\delta^{v,calc}_{33} - \delta^{v,exp}_{33}\right)^{2} + 2\left(\delta^{v,calc}_{11} - \delta^{v,exp}_{11}\right)^{2}\right)\right)$$

A root-mean-square (RMS) chemical shift distance for an ensemble of N chemical shift tensors (Δ_{RMS}) is determined by the following expression:

.

$$\Delta_{RMS} = \left(\frac{1}{N}\sum_{\nu=1}^{N}d_{\nu}^{2}\right)^{1/2}.$$

* Indicates unique reflections that are not present in the experimental PXRD.

Figure S13. Experimental and simulated PXRD patterns of products from MS and crystallization from solution, as well as simulated PXRD patterns for NH_4Cl :Urea. Both slow evaporation (purple) and ball milling (brown) products from preparations of NH_4Cl :Urea are compared to simulations of the three reported crystal structures, black (URAMCL), red (URAMCL01), and green (URAMCL02),^{123–125} and our *Pmna* crystal structure (blue).

				C11		C12	
CCSD Code	Space Group	Temp (K)	Energy (kJ/mol)	$C_{\rm Q}$ (MHz)	η_Q	$C_{\rm Q}$ (MHz)	η_Q
URAMCL ^a	Pcnm	298	-	-	-	-	-
URAMCL01	Pmna	298	0.0	4.63	0.32	-3.32	0.53
URAMCL02	Pmna	298	0.2	4.63	0.32	-3.32	0.52
This Work	Pmna	170	0.7	4.63	0.34	-3.32	0.53

Table S6. Calculated ³⁵Cl EFG tensor parameters for all available structures of NH_4Cl :Urea, as refined at the DFT-D2* level.

^{*a*} Self-consistent field convergence was not possible for calculations using this structure.

Figure S14. ³⁵Cl EFG tensor orientations for NH₄Cl:Urea obtained from model structures from our crystal structure that were geometry optimized at the DFT-D2* level. The H····Cl⁻ hydrogen bonds (< 2.6 Å) are shown in black. The orientations of the three principal components of the EFG tensor (V_{11} , V_{22} , and V_{33}) are shown in yellow.

Material	B_0 (T)	v _{rot} (kHz)	Time Domain	Spectral Width (kHz)	Dwell Time (us)	Acquisition Time (ms)	Recycle Delay (s)	CT-sel. $\pi/2$ pulse width $(\mu s)^a$	¹ H decoupling (kHz)	Scans
	9.4	0	2048	125	4.00	8.192	0.5	5.0	25	12288
$\begin{array}{c c} Material & H \\ (1) \\ Material & (1) \\ (2) \\ NEt_4Cl:2Urea & 9 \\ 16 \\ 19 \\ 9 \\ NEt_4Cl:Urea \cdot 2H_2O & 16 \\ 19 \\ 10 \\ 19 \\ 10 \\ 19 \\ 10 \\ 19 \\ 10 \\ 10$	9.4	12	3072	150	3.33	10.24	0.5	2.0	25	5920
	19.5	0	2048	100	5.00	10.24	0.5	8.0	55	11264
	19.5	16	2048	100	5.00	10.24	0.5	8.0	55	3072
	9.4	0	2048	250	2.00	4.096	0.5	2.5	25	12288
NEt ₄ Cl:Urea · 2H ₂ O	19.5	16	2048	100	5.00	10.24	0.5	8.0	55	7168
	19.5	0	2048	100	5.00	10.24	0.5	8.0	55	86016
	9.4	0	2048	250	2.00	4.096	0.5	2.5	25	12288
NDr C1.21 Iron	9.4	15	2048	200	2.50	5.12	0.5	2.0	25	12288
NF14CI.201ea	19.5	0	2048	100	5.00	10.24	0.5	8.0	55	28672
	19.5	16	2048	100	5.00	10.24	0.5	8.0	55	6144
	9.4	0	1024	50	10.00	10.24	0.5	2.5	25	10240
NDr Cl-2Uron	9.4	5	3072	59.5	8.40	25.804	0.5	2.0	25	3696
NF14CI.SOlea	19.5	0	2048	100	5.00	10.24	0.5	8.0	55	7168
NPr ₄ Cl:2Urea NPr ₄ Cl:3Urea NH ₄ Cl:Urea	19.5	16	2048	100	5.00	10.24	0.5	8.0	55	512
	9.4	0	2048	250	2.00	4.096	1.0	2.5	25	7488
NH ₄ Cl:Urea	19.5	0	5120	200	2.50	12.8	1.4	3.0	55	2048
	19.5	16	5120	200	2.50	12.8	1.4	3.0	55	1024
NH Cl	9.4	0	4096	50	10.00	40.96	1.0	2.5	25	64
	9.4	5	8192	150	3.33	27.31	1.0	2.0	25	1024
NPr C1	9.4	0	2048	50	10.00	20.48	4.0	2.5	25	1184
1111401	9.4	5	36864	500	1.00	36.86	4.0	4.0	25	4096
	9.4	0	1024	150	3.33	3.41	1.0	2.5	25	7968
NEt CLU O	9.4	5	3072	150	3.33	10.24	1.0	2.0	25	12288
NEI4CI II2O	19.5	0	2048	100	5.00	10.24	1.0	8.0	55	7168
	19.5	16	2048	100	5.00	10.24	1.0	8.0	55	3072

Table S7. Acquisition parameters for all ³⁵Cl{¹H} Hahn-echo SSNMR spectra.

^{*a*} For half-integer quadrupolar nuclei, a selective pulse $((\pi/2)/(I+1/2))$ is used to selectively excite the central transition pattern

								$\pi/2$			
			Time	Spectral	Dwell	Acquisition	Recycle	pulse	Contact	$^{1}\mathrm{H}$	
Material	B_0	v_{rot}	Domain	Width	Time	Time	Delay	width	Time	decoupling	Scans
	(T)	(kHz)		(kHz)	(us)	(ms)	(s)	(µs)	(ms)	(kHz)	
NEt ₄ Cl:2Urea	14.1	6	8192	100	5.00	40.96	6	5.0	2	100	1024
NEt ₄ Cl:Urea·2H ₂ O	14.1	6	8192	100	5.00	40.96	6	5.0	2	100	1024
NPr ₄ Cl:2Urea	14.1	6	8192	100	5.00	40.96	15	5.0	2	100	256
NPr ₄ Cl:3Urea	14.1	6	8192	100	5.00	40.96	30	5.0	2	100	128
NH ₄ Cl:Urea	14.1	6	8192	100	5.00	40.96	3	5.0	2	100	2048
NPr ₄ Cl	14.1	6	8192	100	5.00	40.96	6	5.0	2	100	512
NEt ₄ Cl·H ₂ O	14.1	6	8192	100	5.00	40.96	3	5.0	2	100	1024

Table S8. Acquisition parameters for all ${}^{1}H \rightarrow {}^{13}C{}^{1}H$ CP/MAS SSNMR spectra.