Electronic Supplementary Information for

Evidencing the formation of Pt nano-islands on $Cr_2O_3/Ag(111)$

Alex Sandre Kilian^{a,d}, Guilherme Jean Abreu^b, Abner de Siervo^c, Richard Landers^c and Jonder Morais^d*.

^b Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba-PR, Brazil.

^c Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil. ^d Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, CEP-

91501-970, Porto Alegre, RS, Brazil.

Electronic mail: jonder@if.ufrqs.br

XPS and ARXPS characterization

FIG. S 1 (i) shows the XPS spectra for the clean Ag(111) surface, FIG. S 1 (ii) shows the $Cr_2O_3/Ag(111)$ surface, and FIG. S 1 (iii) after Pt deposition. All XPS spectra were collected after annealing.

FIG. S 1. XPS Spectra for (i) Ag(111), (ii) Cr₂O₃/Ag(111) and (iii) Pt/Cr₂O₃/Ag(111) surfaces.

FIG. S 2 (a) shows the peak intensity ratios between $Pt4d_{3/2}$ and $Cr2p_{3/2}$. As the polar angle θ increases, the sensitivity to the photoelectron signal emitted from the

^a Universidade Estadual de Maringá, Umuarama, PR, Brazil.

sample surface increases. FIG. S 2 (a) indicates an increment of Pt/Cr peak intensity ratio for higher values of θ (grazing angles). This demonstrates the Pt atoms predominance on the topmost surface in comparison to Cr, and no evidences of Pt diffusion. FIG. S 2 (b) reveals a linear fitting applied for Pt/Cr ratio. The calculations performed with ARXPS for this fitting provides a 5.6 Å thickness for the Pt nanoislands, about 2.5 ML.

FIG. S 2. (a) Pt4d_{5/2}/Cr2p_{3/2} peak intensity ratio polar scan and (b) the linear fitting applied.

XPD Simulations for Pt/Cr₂O₃/Ag(111) system

FIG. S 3 shows a contour map for the inner potential (V_0) and Debye temperature (T_θ) versus R_a factor. The regions with V_0 values between 15 and 20 eV and T_θ values between 210 and 270 K reveals an increment of R_a factor values. For V_0 values between 5 and 10 eV and T_θ values between 150 and 210 K a decrease of the R_a values occurs. Considering these results, the values used for the structural optimizations in this work were $V_0 = 5$ eV and $T_\theta = 170$ K.

FIG. S 3. Contour map for the inner potential (V_{θ}) and Debye temperature (T_{θ}) versus R_a factor.