Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supporting information

Self-flux grown Ba₄Fe₄ClO_{9.5-x} crystals exhibiting structures with tuneable modulation

Alla Arakcheeva, *^{a,b} Wen Hua Bi,^a Priya Ranjan Baral^a and Arnaud Magrez^a

^a Crystal Growth Facility, IPHYS SB, EPFL, Lausanne 1015, Switzerland; arnaud.magrez@epfl.ch. ^b Phase Solutions Co Ltd, ch. des Mesanges 7, Lausanne 1012,

Switzerland;

Corresponding email: alla.arakcheeva@epfl.ch

Table of Contents:

Reconstruction of the reciprocal space cross sections
Diffuse scattering for Ba ₄ Fe ₄ ClO _{9.5-x} crystals treated under different redox conditions
Indexing of reflections for crystals of Group I and II
Indexing of reflections for crystals of Group III
Comparison of the simulated and experimental XRD profiles (Mo Kα-radiation) for crystals of Groups I, II and III
Powder XRD patterns calculated for the hypothetic unmodulated structures Ba ₄ Fe ₄ ClO ₈ and Ba ₄ Fe ₄ ClO ₉ (Mo Kα-radiation)
Table S1 Experimental details for Ba ₄ Fe ₄ ClO _{9.5-x} average structure determination and refinement
Table S2 Experimental details for Ba ₄ Fe ₄ ClO _{9.5-x} modulated structure determination and refinement
Table S3 Atomic position parameters (site symmetry, xyz , U_{eq} and occupancy) in the Ba ₄ Fe ₄ ClO _{9.5-x} average structure

Reconstruction of the reciprocal space cross sections

Figure S1. Representative cross sections of the reciprocal space reconstruction for Ba₄Fe₄ClO_{9.5-x} crystals treated under different redox conditions: (a) oxidation conditions (group I), (b) high-temperature neutral (group II), and (c) reducing conditions (group III). Horizontal panel (a1) corresponds to as-grown crystal; the XRD experiment was taken at 100 K. Horizontal panel (a2) corresponds the crystal baked at 550 C in air; the XRD experiment was taken at 100 K is similar to one taken from the crystal baked at 400 C at the same T = 100 K. Horizontal panel (a3) corresponds to the crystal baked at 500 C in O₂ flow; the XRD experimental data are similar at both RT and 100 K. Horizontal panel (a4) corresponds to the crystal baked at 550 C in vacuum; the experiments are similar at both RT and 100 K. The sections *hk*0, *hk*3, *0kl* demonstrate the brightest main reflections, and weaker satellite reflections, and specific features of diffuse scattering. The main reflections define the basic reciprocal unit cell (white rhombuses for **a***, **b*** in *hk*0 and *hk*3 and white dash in *0kl* sections), which is identical for all the crystals.

hk3 cross section

Figure S2. Diffuse scattering for Ba₄Fe₄ClO_{9.5-x} crystals treated under different redox conditions.

Crystal baked at 550 C in vacuum; 100K

			N		•••••	k /	
	OV	••				Annual contraction of the second	
	UKI						
							- 3
							- 2
•				•••••		······································	= 2
					• •	• • • • • • • • • • • • • • • • • • •	= 1
			-		C*		= 0
						1	_ 1
						· · · · · · · · · · · · · · · · · · ·	=-1
						/	= -2
			•••	·*****		**************************************	= -3
						and an and a set and a set of the	
Γ							
				-			

Crystal baked at 800 C in vacuum; 100K

Okl		/
	с*	· · · · · · · · · · · · · · · · · · ·
·····		
	8	
		in an

Figure S3. Reciprocal space sections and indexing of reflections for crystal Group I (vertical panel (a)) and Group II (vertical panel (b)) of $Ba_4Fe_4ClO_{9.5\cdot x}$. Panel (a): typical patterns and indexing of reflections (bottom) for crystal of Group I using $q1 = 1/5a^*$ and $q2 = 1/5b^*$. Panel (b): typical patterns and indexing of reflections (bottom) for crystal of Group II using $q1' = 1/15a^* + 1/15b^*$ and $q2' = -2/15a^* + 1/15b^*$, which are related to the vectors in (a) as q1' + q2' = q1 and 2q2' + q1' = q2. The *hklmn* index of each reflection is defined by the vector sum $ha^* + kb^* + lc^* + mq1 + nq2$ and $ha^* + kb^* + lc^* + mq1' + nq2'$ for Group I and II, respectively.

Figure S4. Reciprocal space sections and indexing of reflections for crystal Group III of Ba₄Fe₄ClO₉. Panel (a): 1kl cross section shows incommensurate vectors (blue arrows) $q3 = 1.277c^*$ applied to hk0 and hk2 reflection lines. Panel (b) shows reflections, which can be indexed in hk1 and hk3 planes using $q1'' = 1/16a^* + 1/16b^*$ and $q2'' = -2/16a^* + 1/16b^*$ as shown at the bottom. Panel (c) shows satellite reflections, which can be only indexed using the additional q3 vector as shown at the bottom. The hkImnp indexation uses the vector sum: $ha^* + kb^* + lc^* + mq1'' + nq2'' + pq3''$.

Figure S5. Comparison of the simulated XRD profiles and those calculated on the basis of the experimental diffraction data (Mo K α -radiation) measured for single crystals Ba₄Fe₄ClO_{9.5-x} of Groups I and II. At the figure bottom, the experimental diffraction data (Mo K α -radiation) measured for a single crystal Ba₄Fe₄ClO₉ of crystal Groups III is also shown. Blue and orange strips indicate positions of the main and satellite reflections, respectively.

Figure S6. Powder XRD patterns calculated for the hypothetic unmodulated structures (Mo Kα-radiation).

Experimental details for Ba₄Fe₄ClO_{9.5-x} average structure determination and refinement

Table S1. Experimental details for Ba₄Fe₄ClO_{9.5-x} average structure determination and refinement using crystals processed under different conditions. For all crystals: hexagonal space group, $P\overline{6}m2$, Z = 1; experiments were carried out with Mo K α radiation.

		Group I	Group II	Group III	
Crystal processing	As-grown	Baking at 400 C	Baking at 500 C	Baking at 800 C	Baking at 500 C
condition		in air	in O ₂ flow	in vacuum	in (Ar+H ₂) flow
Crystal data	1		1	I	I
Chemical formula	Ba4Fe4ClO9.4(1)	Ba4Fe4ClO9.5(1)	Ba4Fe4ClO9.5(1)	Ba4Fe4ClO9.4(1)	Ba4Fe4ClO9.0(1)
<i>a</i> , <i>c</i> (Å)	5.7612(6),	5.7625(5),	5.7625(5),	5.7655(5),	5.7585(5),
	9.9792(12)	9.9880(11)	9.9859(12)	10.0022(12)	9.9796(12)
$V(Å^3)$	286.85	287.23	287.17	287.94	286.59
Data collection	1	1	1	I	I
Temperature (K)	100	100	100	293	100
No. of measured,	1969, 432, 424	4402, 449, 442	4986, 409, 360	5182, 421, 419	2759, 393, 393
independent and	$[I > 3\sigma(I)]$	$[I > 3\sigma(I)]$	$[I > 5\sigma(I)]$	$[I > 3\sigma(I)]$	$[I > 3\sigma(I)]$
observed reflections					
R _{int}	0.029	0.067	0.079	0.086	0.063
Refinement				I	I
$R[F^2 > 2\sigma(F^2)], wR(F^2),$	0.032, 0.088,	0.040, 0.100,	0.030, 0.081,	0.030, 0.080,	0.040, 0.100,
S	2.38	4.12	3.66	3.42	3.61
No. of reflections	424	442	360	419	393
No. of parameters	38	34	29	32	29
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	2.28, -3.42	5.03, -3.14	5.37, -3.20	3.23, -1.43	5.48, -2.50

Table S2. Experimental details for Ba₄Fe₄ClO_{9.5-x} modulated structure determination and refinement using crystals processed at different conditions. For all crystals: hexagonal crystallographic system is fitted space group $P\overline{6}m2$ for the average structure; experiments were carried out with Mo K α radiation at 100 K.

	Group I			Group II
Crystal	As-grown		Baking at 400 C	Baking at 800 C in vacuum
processing			in O ₂ flow	
condition				
Structure	Superspace approach	Supercell	Supercell	Superspace approach
refinement		approach	approach	
approximation				
Chemical	Ba ₄ Fe ₄ ClO _{9.4(1)}	Ba ₄ Fe ₄ ClO _{9.4(1)}	Ba ₄ Fe ₄ ClO _{9.5(1)}	Ba ₄ Fe ₄ ClO _{9.4(1)}
formula				
Space /	$P\bar{6}m2(\alpha,0,0)000(-\alpha,\alpha 0)00$	P6m2	P6m2	$P\bar{6}m2 (\alpha, \alpha, 0)000(-$
superspace	(No. 187.2.82.3) †	(No. 187)	(No. 187)	2α,α0)00 (No. 187.2.83.4) ‡
group				
Wave q -	$q_1 = 0.2a^*;$	-	-	$\mathbf{q}_1 = 1/15\mathbf{a}^* + 1/15\mathbf{b}^*;$
vectors	$q_2 = -0.2a^* + 0.2b^*$			$\mathbf{q}_2 = -2/15\mathbf{a}^* + 1/15\mathbf{b}^*$
<i>a</i> , <i>c</i> (Å)	5.7612 (6), 9.9792 (12)	5.7612 × 5 =	5.7625 × 5 =	5.7655 (5), 10.0022 (12)
		28.806 (1),	28.813 (1),	
		9.9792 (12)	9.9859 (12)	
$V(Å^3)$	286.85 (5)	286.85 × 25 =	287.17× 25 =	287.94 (5)
		7171.25 (3)	7180.77 (3)	
No. of	37819, 11036, 3368 [<i>I</i> >	37819, 8870,	37905, 8879,	58747,9678,4707 [<i>I</i> >
measured,	5 σ (<i>I</i>)]	3407 $[I > 5\sigma(I)]$	4231 [$I > 5\sigma(I)$]	5σ(<i>I</i>)]
independent				
and				
observed				
reflections				
R _{int}	0.060	0.064	0.053	0.082
$R[F^2 > 2\sigma(F^2)],$	0.050, 0.117, 2.16	0.031, 0.072,	0.052, 0.127, 3.99	0.095, 0.231, 6.31
$wR(F^2), S$		1.34		
No. of	3368	3407	4231	4707
reflections				

No. of	248	317	318	207
parameters				
$\Delta \rho_{max}, \Delta \rho_{min}$ (e	5.32, -6.20	1.97, -1.48	6.06, -2.14	19.41, -12.62
Å-3)				

 $\frac{1}{5}$ Symmetry operations: (1) x_1 , x_2 , x_3 , x_4 , x_5 ; (2) $-x_2$, x_1-x_2 , x_3 , $-x_4-x_5$, x_4 ; (3) $-x_1+x_2$, $-x_1$, x_3 , x_5 , $-x_4-x_5$; (4) x_1 , x_2 , $-x_3$, x_4 , x_5 ; (5) $-x_2$, x_1-x_2 , $-x_3$, $-x_4-x_5$, x_4 ; (6) $-x_1+x_2$, $-x_1$, $-x_3$, x_5 , $-x_4-x_5$; (7) $-x_2$, $-x_1$, x_3 , $-x_4-x_5$, x_5 ; (8) $-x_1+x_2$, x_2 , x_3 , x_5 , x_4 ; (9) x_1 , x_1-x_2 , x_3 , x_4 , $-x_4-x_5$; (10) $-x_2$, $-x_1$, $-x_3$, $-x_4-x_5$, x_5 ; (11) $-x_1+x_2$, x_2 , $-x_3$, x_5 , x_4 ; (12) x_1 , x_1-x_2 , $-x_3$, x_4 , $-x_4-x_5$.

 $\ddagger \text{Symmetry operations: (1) } x_1, x_2, x_3, x_4, x_5; (2) -x_2, x_1 - x_2, x_3, -x_4 - x_5, x_4; (3) -x_1 + x_2, -x_1, x_3, x_5, -x_4 - x_5; (4) x_1, x_2, -x_3, x_4, x_5; (5) -x_2, x_1 - x_2, -x_3, -x_4 - x_5, x_4; (6) -x_1 + x_2, -x_1, -x_3, x_5, -x_4 - x_5; (7) -x_2, -x_1, x_3, -x_4, x_4 + x_5; (8) -x_1 + x_2, x_2, x_3, x_4 + x_5, -x_5; (9) x_1, x_1 - x_2, x_3, -x_5, -x_4; (10) -x_2, -x_1, -x_3, -x_4, x_4 + x_5; (11) -x_1 + x_2, x_2, -x_3, x_4 + x_5, -x_5; (12) x_1, x_1 - x_2, -x_3, -x_5, -x_4.$

		Group I		Group II	Group III
Crystal	As-grown	Baking at 400	Baking at 500	Baking at 800	Baking at 500
processing		C in air	C in O ₂ flow	C in vacuum	C in (Ar+H ₂)
condition					flow
Ba11	$U_{eq} = 0.007;$	$U_{eq} = 0.008;$	$U_{eq} = 0.003;$	$U_{eq} = 0.016;$	$U_{eq} = 0.017;$
1f: (2/3 1/3 ¹ / ₂)	occ. = 1	occ. = 1	occ. = 1	occ. = 1	occ. = 1
Ba12	$U_{eq} = 0.012;$	$U_{eq} = 0.018;$	$U_{eq} = 0.014;$	$U_{eq} = 0.022;$	$U_{eq} = 0.008;$
1e: (1/3 2/3 0)	occ. = 1	occ. = 1	occ. = 1	occ. = 1	occ. = 1
Ba21	z = 0.3046,	z = 0.3054,	z = 0.3074,	z = 0.3052,	z = 0.3040,
2g: (0 0 z)	$U_{eq} = 0.003;$	$U_{eq} = 0.003;$	$U_{eq} = 0.001;$	$U_{eq} = 0.008;$	$U_{eq} = 0.004;$
	occ. = 0.47	occ. = 0.41	occ. = 0.51	occ. = 0.45	occ. = 0.50
Ba22	z = 0.1958,	z = 0.1952,	z = 0.1977,	z = 0.1977,	z = 0.1955,
2g: (0 0 z)	$U_{eq} = 0.005;$	$U_{eq} = 0.009;$	$U_{eq} = 0.003;$	$U_{eq} = 0.011;$	$U_{eq} = 0.008;$
	occ. = 0.53	occ. = 0.59	occ. = 0.49	occ. = 0.55	occ. = 0.50
Fe1	z = 0.3434,	z = 0.3468,	z = 0.3522,	z = 0.3489,	z = 0.3394,
2h: (1/3 2/3 z)	$U_{eq} = 0.012;$	$U_{eq} = 0.013;$	$U_{eq} = 0.008;$	$U_{eq} = 0.022;$	$U_{eq} = 0.022;$
	occ. = 1	occ. = 1	occ. = 1	occ. = 1	occ. = 1
Fe2	z = 0.1574,	z = 0.1630,	z = 0.1669,	z = 0.1663,	z = 0.1568,
2h: (2/3 1/3 z)	$U_{eq} = 0.015;$	$U_{eq} = 0.021;$	$U_{eq} = 0.012;$	$U_{eq} = 0.012;$	$U_{eq} = 0.013;$
	occ. = 1	occ. = 1	occ. = 1	occ. = 1	occ. = 1
Cl1	$U_{eq} = 0.046;$	$U_{eq} = 0.008;$	$U_{eq} = 0.008;$	$U_{eq} = 0.026;$	$U_{eq} = 0.001;$
1a: (0 0 0)	occ. = 0.47	occ. = 0.41	occ. = 0.51	occ. = 0.45	occ. = 0.50
Cl2	$U_{eq} = 0.003;$	$U_{eq} = 0.037;$	$U_{eq} = 0.031;$	$U_{eq} = 0.030;$	$U_{eq} = 0.055;$
1b: (0 0 ½)	occ. = 0.53	occ. = 0.59	occ. = 0.49	occ. = 0.55	occ. = 0.50
01	x = 0.502	x = 0.495	x = 0.493	x = 0.498	x = 0.501
6n: (x -x z)	z = 0.243	z = 0.246	z = 0.250	z = 0.252	z = 0.246
	$U_{eq} = 0.007;$	$U_{eq} = 0.007;$	$U_{eq} = 0.004;$	$U_{eq} = 0.015;$	$U_{eq} = 0.046;$
	occ. = 1	occ. = 1	occ. = 1	occ. = 1	occ. = 1
O21b	x = 0.154		x = 0.154		
6m: (xy ½)	y = 0.424		y = 0.428		
	$U_{eq} = 0.043;$		$U_{eq} = 0.008;$		
	occ. = 0.20		occ. = 0.20		

Table S3. Atomic position parameters (site symmetry, *xyz*, U_{eq} and occupancy) in Ba₄Fe₄ClO_{9.5-x} average structure (sp.gr. $P\overline{6}m2$; $a \approx 5.76$, $c \approx 10.00$ Å) for crystals processed under different conditions.

O21b		x = 0.215			
3k: (x 2x ½)		y = 0.430			
		$U_{eq} = 0.046;$			
		occ. = 0.333			
O21a				x = 0.3693	x = 0.186
3k: (x 2x ½)				$U_{eq} = 0.281;$	$U_{eq} = 0.018;$
				occ. = 0.400	occ. = 0.667
O22a	x = 0.642	x = 0.637		x = 0.634	x = 0.7045
3j: (x 2x 0)	$U_{eq} = 0.023;$	$U_{eq} = 0.012;$		$U_{eq} = 0.018;$	$U_{eq} = 0.012;$
	occ. = 0.064	occ. $= 0.333$		occ. = 0.064	occ. $= 0.333$
O22a			$U_{eq} = 0.004;$		
1e: (2/3 1/3 0)			occ. = 0.30		
O22b	x = 0.815	x = 0.824	x = 0.822	x = 0.817	
3j: (x 2x 0)	$U_{eq} = 0.017;$	$U_{eq} = 0.046;$	$U_{eq} = 0.013;$	$U_{eq} = 0.018;$	
	occ. = 0.667	occ. = 0.493	occ. = 0.667	occ. = 0.667	