Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

SUPPORTING INFORMATION

Effect of Poly(Acrylic Acid) on Crystallization of Calcium Carbonate in a Hydrogel

Hong Lyun Kim⁺, Yu Seob Shin⁺, and Sung Ho Yang^{*}

Department of Chemistry Education, Korea National University of Education, Chungbuk 28173, Korea

⁺These authors contributed equally.

Phone: +82-43-230-3708 *Email: sunghoyang@knue.ac.kr

SUPPORTING INFORMATION

CONTENTS

Figure S1. The positions of the respective regions of GEL_0 , $GEL_{0.01}$, $GEL_{0.1}$ and GEL_1 after 12h crystallization.

Figure S2. XRD data of CaCO₃ formed in a) GEL_{0.01}, b) GEL_{0.1}, c) GEL₁ and d) pristine agarose gel.

Figure S3. FTIR data of CaCO₃ formed in a) GEL_{0.01}, b) GEL_{0.1} and c) GEL₁.

Figure S4. SEM micrograph of mixed region in GEL_{0.1}.

Figure S5. Average size of calcite particles in $GEL_{0.1}$ and GEL_1 , which is measured by SEM micrographs.

Figure S6. SEM micrographs of CaCO₃ formed after 12h in $GEL_{0.1}$ with different pH of Na_2CO_3 supernatant.

Figure S7. SEM micrographs of $CaCO_3$ formed after 12h in hydrogels with various concentrations of PAA.

Figure S8. The average particle size measured by DLS as a function of pH in a free solution in the presence 0.1 (light gray) and 1 mg/mL (dark gray) PAA.

Figure S1. The positions of the respective regions of GEL_0 , $GEL_{0.01}$, $GEL_{0.1}$ and GEL_1 after 12h crystallization.

Figure S2. XRD data of $CaCO_3$ formed in a) $GEL_{0.01}$, b) $GEL_{0.1}$, c) GEL_1 and d) pristine agarose gel. The characteristic peaks at 29.4°, 35.9°, 39.5° were assigned as the (104), (110), and (113) facets base on reference data of calcite (JCPDF-47-1743).

Figure S3. FTIR data of CaCO₃ formed in a) GEL_{0.01}, b) GEL_{0.1} and c) GEL₁. Main peaks for calcite were found at ~1420 cm⁻¹, ~880 cm⁻¹, and ~710 cm⁻¹ in all samples, which were assigned as v_3 (inplane asymmetric stretching), v_2 (out-of-plane bending) and v_4 (in-plane bending) mode, respectively (S. Gunasekaran, G. Anbalagan and S. Pandi, J. Raman Spectra., 2006, **37**, 892-899).

Figure S4. SEM micrograph of mixed region in GEL_{0.1}. Scale bar is 50 μ m.

Figure S5. Average size of calcite particles in GEL_{0.1} and GEL₁, which is measured from SEM micrographs.

Figure S6. SEM micrographs of CaCO₃ formed after 12h in GEL_{0.1} with different pH of Na₂CO₃ reservoir. The blue oval and orange circle indicate elliptical calcite and spherical calcite, respectively. Black scale bar is 5 mm and white one is 50 μ m.

Figure S7. SEM micrographs of CaCO₃ formed after 12h in hydrogles with various concentrations of PAA. The blue oval and orange circle indicate elliptical calcite and spherical calcite respectively. Black scale bar is 5 mm and white one is 50 μm.

Figure S8. The average particle size measured by DLS as a function of pH in a free solution in the presence 0.1 (light gray) and 1 mg/mL (dark gray) PAA. The concentration of Ca²⁺ is 10 mM.