Controlled Synthesis and Structural Modulation to Boost Intrinsic Photocatalytic Activity of BiVO₄

Santosh S. Patil,^a Jaewon Lee,^a Taewon Kim,^a Lakshmana Reddy Nagappagari,^b and

Kiyoung Lee*a

^aDepartment of Chemistry and Chemical Engineering, Inha University, 22212, Incheon, South Korea.

^bDivision of Advanced Materials Engineering, Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea.

*Correspondence: kiyoung@inha.ac.kr (K. L)

Fig. S1. FESEM image of a BiVO₄ prior to the hydrothermal treatment and corresponding EDS elemental image.

Supporting Information S2

Fig. S2. FESEM image of a BVO-SLR'24 prepared with different content of HNO₃ (a) 2 mL

(b) 4 mL (c) 6 mL and (d) 8 mL.

Fig. S3. EDS (compositional analysis) of BVO-SSR, BVO-HDR, and BVO-SLR samples prepared with different synthesis strategies.

Fig. S4 TGA curves of BVO-SSR, BVO-HDR24, and BVO-SLR'24 samples.

TGA curves were also utilized to clarify the oxygen vacancies. As illustrated in Fig.S4, the TGA curves of the catalysts BVO-SSR and BVO-SLR'24 indicate that BiVO₄ decomposition proceeds in four stages at temperatures ranging from 30–100 °C to 100–270 °C, 270–550 °C, and 550–800 °C. The catalysts lost weight in the first step (30–100 °C) due to the removal of adsorbed water molecules from the surface. The second stage of weight loss for BVO-SSR was 0.07 percent, the third stage was 0.28 percent, and the final stage was 0.20 percent. Weight loss for the BVO-SSR and BVO-SLR'24 catalysts occurred between 270 and 550 °C due to phase change from tetragonal to monoclinic BiVO₄, as well as oxygen vacancies that can be filled by oxygen atoms at this temperature.^{1–3}

Fig. S5. (a) Photodegradation of MB with time during photolysis (without photocatalyst) under light irradiation and (b) corresponding kinetics of degradation studies.

Table S1 Rate constant (*K*) of the photocatalytic MB degradation using the as-prepared photocatalyst samples.

Sr. No.	Catalyst	Rate constant (K) for	Std. Dev.
		MB degradation [min ⁻¹]	
1	BVO-HDR 24	1.10 × 10 ⁻²	0.00068
2	BVO-SLR'24	3.19 × 10 ⁻²	0.0045
3	BVO-SLR12	1.46 × 10 ⁻²	0.00043
4	BVO-SLR24	1.16 × 10 ⁻²	0.00068
5	BVO-SLR36	1.62×10^{-2}	0.00048
5	BVO-SLR 48	0.98×10^{-2}	0.001
6	BVO-SSR	1.38× 10 ⁻²	0.00067

Fig. S6. Photocurrent density as a function of time for BVO-SLR'24 at 0.6 V versus RHE under 100 mW/cm² illumination.

References

- S. D. Dolić, D. J. Jovanović, K. Smits, B. Babić, M. Marinović-Cincović, S. Porobić and M. D. Dramićanin, *Ceram. Int.*, 2018, 44, 17953–17961.
- 2 S. Nikam and S. Joshi, *RSC Adv.*, 2016, **6**, 107463–107474.
- 3 A. K. Bhattacharya, K. K. Mallick and A. Hartridge, *Mater. Lett.*, 1997, **30**, 7–13.