Electronic Supplementary Information

Assembly of a Zn(II) coordination polymer of tetrapyridyl tetraene ligands for selective sensing of CrO_4^{2-} and Fe^{3+} in water via luminescence quenching and enhancement

Zhan-Yong Yang,^{*a*} Chen Cao,^{*a*} Xiao Sang,^{*a*} Yu-Xuan Hong,^{*a*} Hong Yu,*^{*a*} Chun-Yan Ni^{*a*} and Jian-Ping Lang*^{*a,b*}

^aCollege of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, People's Republic of China

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of OrganicChemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic ofChina

* Correspondence authors at: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

Tel: +86-512-65882865; fax: +86-512-65883615.

E-mail address: jplang@suda.edu.cn (J.P. Lang).

Contents

Fig. S1 The FTIR spectra of CP1-CP4S3
Fig. S2The TGA curves of CP1-CP4S3
Fig. S3 Experimental (red) and simulated (black) PXRD patterns for CP1-CP4S4
Fig. S4 Plot showing the changes on the weight of CP3 after its suspension in water in a
pH range of 3 to 13 for 24 hours
Fig. S5 Luminescence intensities of CP1 (a) and CP2 (b) treated with different
inorganic anions at 513 nm (excited at 413 nm)
Fig. S6 Luminescence intensities of CP1 (a) and CP2 (b) treated with different metal
ions at 513 nm (excited at 413 nm)
Fig. S7 PXRD patterns for the sample obtained after the detection of CrO ₄ ²⁻ using CP3
Fig. S8 The TGA curve of the sample obtained after the detection of CrO ₄ ²⁻ using CP3
Fig. S9 The ¹ H NMR spectrum of the solution after the detection of CrO ₄ ²⁻ using CP3
and other inorganic anions (blue) in aqueous solution
Fig. S12 Photoluminescence intensities of CP3 after three cycles of detecting $CrO_4^{2^2}$.S8
Fig. S13 PXRD patterns for the sample obtained after the detection of Fe ³⁺ using CP3
Fig. S14 The TGA curves of the sample obtained after the detection of Fe ³⁺ using CP3
Fig. S15 Photoluminescence intensities of CP3 after one cycle of detecting Fe^{3+} in
water
Fig. S16 (a) MALDI-TOF spectrum of CP3 after the detection of Fe ³⁺ in the m/z range
of 0-2500. (b) MALDI-TOF spectrum of CP3 after the detection of Fe ³⁺ in the m/z
range of 1915-1930
Fig. S17 The high-resolution XPS spectrum of N 1s after immersing CP3 in the
aqueous solution of Fe ³⁺
Fig. S18 Luminescence intensities of CP3 and the mixture of CP3, Fe^{3+} and CrO_4^{2-} in
water at 513 nm (excited at 413 nm)

Fig. S1 The FTIR spectra of CP1-CP4.

Fig. S2 The TGA curves of CP1-CP4.

Fig. S3 Experimental (red) and simulated (black) PXRD patterns for CP1-CP4.

Fig. S4 Plot showing the changes on the weight of **CP3** after its suspension in water in a pH range of 3 to 13 for 24 hours.

Fig. S5 Luminescence intensities of **CP1** (a) and **CP2** (b) treated with different inorganic anions at 513 nm (excited at 413 nm).

Fig. S6 Luminescence intensities of **CP1** (a) and **CP2** (b) treated with different metal ions at 513 nm (excited at 413 nm).

Fig. S7 PXRD patterns for the sample obtained after the detection of CrO_4^{2-} using **CP3**.

Fig. S8 The TGA curve of the sample obtained after the detection of CrO_4^{2-} using CP3.

Fig. S9 The ¹H NMR spectrum of the solution after the detection of CrO_4^{2-} using **CP3**.

Fig. S10 The excitation spectrum of **CP3** (red) and the UV-vis spectra of CrO_4^{2-} (cyan) and other inorganic anions (blue) in aqueous solution.

Fig. S11 (a) Schematic of the luminescent quenching mechanism experiment. (b) green curve, **CP3** in position B and CrO_4^{2-} in position A; red curve, mixture of **CP3** and $\text{CrO}_4^{2-}(1 \times 10^{-3} \text{ mol/L})$ in position B; blue curve, **CP3** in position B and CrO_4^{2-} in position C.

Fig. S12 Photoluminescence intensities of CP3 after three cycles of detecting CrO_4^{2-} .

Fig. S13 PXRD patterns for the sample obtained after the detection of Fe^{3+} using CP3.

Fig. S14 The TGA curves of the sample obtained after the detection of Fe^{3+} using CP3.

Fig. S15 Photoluminescence intensities of **CP3** after one cycle of detecting Fe^{3+} in water.

Fig. S16 (a) MALDI-TOF spectrum of **CP3** after the detection of Fe^{3+} in the m/z range of 0-2500. (b) MALDI-TOF spectrum of **CP3** after the detection of Fe^{3+} in the m/z range of 1915-1930.

Fig. S17 The high-resolution XPS spectrum of N 1s after immersing CP3 in the aqueous solution of Fe^{3+} .

Fig. S18 Luminescence intensities of **CP3** and the mixture of **CP3**, Fe^{3+} and CrO_4^{2-} in water at 513 nm (excited at 413 nm).