Supporting information for:

In situ synthesis of Pt nanoparticles encapsulated in Silicalite-1 zeolite via a steam-assisted dry-gel conversion method

Siyu Zhang^{ab}, Xiaomin Zhang^{*a}, Lei Dong^{ab}, Shengjie Zhu^{ab}, Yangyang Yuan^a and Lei Xu^{*a}

^a National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

* Corresponding authors.

Email addresses: <u>leixu@dicp.ac.cn</u> (Lei Xu), <u>zhangxm@dicp.ac.cn</u> (Xiaomin Zhang).

Note: Pt@S-1-nm sample was synthesized by the same procedure as the synthesis of Pt@S-1 described in experimental part, except without the introduction of MPTS in the first step.

Fig. S2 TEM image of Pt@S-1-nm.

Table S1 ICP result of Pt@S-1 without using MP
--

Catalyst	Theoretical dosage of Pt	Final Pt content	loss of Pt species
Pt@S-1-nm	0.3%	0.03%	90%