# **Supporting Information**

### Polymorphic Solvates, Ionic-cocrystals and C-N Bond Formation to Form Ionic Cocrystal

## In Sulfamethoxazole and Sulfathiazole Derived Urea

Jitendra Nath, Jubaraj B. Baruah\*

## **Content list**

| Title                                                                                                |
|------------------------------------------------------------------------------------------------------|
| Synthesis and characterization of the hosts, solvates, cocrystals and salts                          |
| Scheme S1: A plausible mechanism of the C-N bond formation from reaction of HSTZU                    |
| with <b>TBAI</b> .                                                                                   |
| Table S1:Hydrogen bond parameters of solvates, cocrystals and salt                                   |
| Table S2: Torsion angles of solvates, ionic cocrystals and salts of HSMZU                            |
| Table S3: Torsion angles of solvates of HSTZU                                                        |
| Figure S1: ORTEP diagram of HSMZU.DMF-P1 drawn with 50 % ellipsoid probability.                      |
| Figure S2: Powder X-ray diffraction patterns of the HSMZU.DMF-P1                                     |
| Figure S3: FT-IR spectrum (neat) of the HSMZU.DMF-P1                                                 |
| Figure S4: <sup>1</sup> HNMR (DMSO-d <sub>6</sub> , 600 MHz) spectra of the HSMZU.DMF-P1             |
| Figure S5: <sup>1</sup> HNMR (DMSO-d6, 600 MHz) spectra of the HSMZU                                 |
| Figure S6: <sup>1</sup> H-2D-HOMOCOSY (600 MHz, DMSO-d <sub>6</sub> ) spectrum of the HSMZU.DMF-P1   |
| Figure S7: <sup>13</sup> CNMR (125 MHz, DMSO-d <sub>6</sub> ) spectra of the HSMZU                   |
| Figure S8: <sup>13</sup> CNMR (125 MHz, DMSO-d <sub>6</sub> ) spectra of the HSMZU.DMF-P1            |
| Figure S9: <sup>1</sup> HNMR (DMSO-d <sub>6</sub> , 600 MHz) spectra of the HSMZU.DMF-P1 at variable |
| temperatures                                                                                         |
| Figure S10: Variable temperature <sup>1</sup> HNMR spectra (DMSO-d <sub>6</sub> , 600 MHz) of        |
| HSMZU.DMF-P1 with 10 equivalent of TBAI (* assignment of peaks)                                      |
| Figure S11: <sup>1</sup> H NMR (600 MHz, DMSO-d <sub>6</sub> ) titration of HSMZU.DMF-P1 by adding   |
| different amounts of tetrabutylammonium (a) chloride and (b) bromide (showing the                    |
| aromatic protons of HSMZU.DMF-P1)                                                                    |
| Figure S12: ORTEP diagram of HSMZU.DMF-P2 drawn with 50% ellipsoid probability                       |
| Figure S13: Powder X-ray diffraction patterns of the HSMZU.DMF-P2                                    |
| Figure S14: FT-IR spectrum (neat) of the HSMZU.DMF-P2                                                |
| Figure S15 : Hirshfeld surfaces of (d) HSMZU.DMF-P1, (e) HSMZU.DMF-P2, (f)                           |
| TBA(SMZU).                                                                                           |
| Figure S16: ORTEP diagram of TBA(SMZU) drawn with 50% ellipsoid probability                          |
| Figure S17: Powder X-ray diffraction patterns of the TBA(SMZU)                                       |
| Figure S18: FT-IR spectrum (neat) of the TBA(SMZU)                                                   |
| Figure S19: <sup>1</sup> H 2D-HOMOCOSY (600 MHz, DMSO-d <sub>6</sub> ) spectrum of the TBA(SMZU)     |
| Figure S20: <sup>1</sup> HNMR (DMSO- $d_6$ , 600 MHz) spectra of the TBA(SMZU).                      |
| Figure S21: ORTEP diagram of butyl-SMZU.TBAI drawn with 50% ellipsoid probability.                   |
| Figure S22: Powder X-ray diffraction patterns of the butyl-SMZU.TBAI                                 |
| Figure S23: FT-IR spectrum (neat) of the butyl-SMZU.TBAI                                             |
| Figure S24: <sup>1</sup> HNMR (DMSO-d <sub>6</sub> , 600 MHz) spectra of the butyl-SMZU.TBAI         |
| Figure S25: <sup>13</sup> CNMR (125 MHz, DMSO- $d_6$ ) spectra of the butyl-SMZU.TBAI.               |
| Figure S26: ESI mass spectrum of the butyl-SMZU.                                                     |
| Figure S27: ORTEP diagram of HSTZU.DMF drawn with 50% ellipsoid probability                          |
| Figure S28: Powder X-ray diffraction patterns of the HSTZU.DMF                                       |
| Figure S29: FT-IR spectrum (neat) of the HSTZU.DMF                                                   |
| Figure S30: HNMR (DMSO-d <sub>6</sub> , 600 MHz,) spectra of the HSTZ.DMF                            |

Figure S31: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the HSTZ.DMF

Figure S32: <sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>) titration showing the aromatic protons of

HSTZU.DMF recorded by adding different amounts of tetrabutylammonium (a) chloride and (b) bromide

Figure S33: ORTEP diagram of HSTZU.DMSO drawn with 50% ellipsoid probability.

Figure S34: Powder X-ray diffraction patterns of the HSTZU.DMSO

Figure S35: FT-IR spectrum (neat) of the HSTZU.DMSO

Figure S36: <sup>1</sup>H 2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the HSTZU.DMSO

Figure S37: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz,) spectra of the HSTZU.DMSO

Figure S38: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the HSTZU.DMSO

Figure S39: ORTEP diagram of HSTZU.TBAI drawn with 50 % ellipsoid probability.

Figure S40: Powder X-ray diffraction patterns of the HSTZU.TBAI.

Figure S41: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the HSTZU.TBAI

Figure S42: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the HSTZU.TBAI

Figure S43: FT-IR spectrum (neat) of the TBA(STZU)

Figure S44: <sup>1</sup>H 2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the TBA(STZU).

Figure S45: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the TBA(STZU)

Figure S46: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the TBA(STZU)

Figure S47: Thermogram of the polymorph (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2

Figure S48: Differential scanning calorimetry of (a) HSTZU.DMF (b) HSTZU.DMSO

(heating rate 10°C/min under nitrogen atmosphere).

Figure S49: Hirshfeld surfaces of (a) HSTZU.DMF (b) HSTZU.DMSO, (c)

#### HSTZU.TBAI

Figure S50: Percentages of the H···C, H···H, H···O, H···N, H···S and H···anion interaction (include reciprocal contacts) in 2D fingerprint plots

Figure **S51**: 2D fingerprint plots (including reciprocal contacts) of the H…C, H…H, H…O,

H…N and H…anion interactions of a) HSMZU.DMF-P1 b) HSMZU.DMF-P2 c)

#### TBA(SMZU).

Figure S52: 2D fingerprint plots (including reciprocal contacts) of the  $H \cdots C$ ,  $H \cdots H$ ,  $H \cdots O$ ,  $H \cdots N$  and  $H \cdots$  anion interactions of (a) HSTZU.DMF (b) HSTZU.DMSO (c)

#### HSTZU.TBAI

Figure S53: Changes in the UV–visible spectra of (a) HSTZU and (b) HSMZU  $(3.3 \times 10^{-5} \text{ M}, 2\text{mL} \text{ in each case})$  in dimethylsulfoxide by aliquots (30 µL) of tetrabutylammonium fluoride ( $10^{-2} \text{ M}$ )

Figure S54: Visual color change of a) HSMZU b) STZU after addition of TBAF and TBABr respectively.

Figure S55: HOMO and LUMO gap (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2 (c) TBA(SMZU), (d) HSTZU.DMF (e) HSMZU-P1 (f) HSMZU-P2 (g) dimer of HSMZU-P1 (h) dimer of HSMZU-P2 (i) dimer of TBA(SMZU) (j) dimer of HSTZU.DMF (k) HSMZU.DMSO calculated by DFT using B3LYP/6-31+G (d, p) as basis set

### Synthesis and characterization of the hosts, solvates, cocrystals and salts:

HSMZU.DMF-P1: A solution of 4-nitrophenylisocyanate (328 mg, 2 mmol) and sulfamethoxazole (507 mg, 2 mmol) in acetonitrile (30 ml) was refluxed for 2 hs after which the reaction mixture was stirred at room temperature for about 6 hs. This had resulted in the formation of a yellow precipitate. This precipitate was filtered and it was dissolved in 3 ml DMF.

The solution thus prepared was kept undisturbed, which provided the crystals of HSMZU.DMF-P1 yield = 76 %. IR (Neat, cm<sup>-1</sup>): 3272 (w), 3135 (w) 1724 (s), 1657 (s), 1615 (s), 1590 (s), 1574 (s), 1542 (s), 1495 (s), 1468 (s), 1409 (s), 1374 (s), 1384 (s), 1333 (m), 1317(s), 1251 (s), 1197 (s), 1162 (s), 1106 (s), 1091 (s), 1028 (m), 928 (s), 885 (s), 854 (s), 843 (m), 831 (s), 751 (s), 715 (s), 667 (s), 645 (s), 579 (s), 556 (s). <sup>1</sup>HNMR (600 MHz, DMSO-d<sub>6</sub>, ppm): 11.31 (s, 1H), 9.57 (s, N-H), 9.39 (s, N-H), 8.21- 8.20 (d, J = 10 Hz, 2H ), 7.95 (s, 1H ), 7.79 (d, J = 8 Hz), 7.70 (d, J = 9 Hz ), 7.67 (d, J = 8 Hz ), 6.13 (s, 1H), 2.89 (s, 3H), 2.73 (s, 3H), 2.29 (s, 3H). <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>): 170.3, 162.3, 157.6, 151.8, 145.9, 143.6, 141.4, 132.3, 128.2, 125.2, 118.2, 117.8, 95.4, 35.8, 30.7, 12.1.

HSMZU.DMF-P2: A solution of the crude yellow precipitate of SMZU (103 mg, 0.25 mmol) was dissolved in DMF (10 ml) was stirred at 80°C for about 1 h. The solution was filtered to discard suspended material (if any) and it was kept undisturbed for crystallization. Upon standing for 8-10 days red block crystals of the HSMZU.DMF-P2 were obtained (yield 82 %). IR (Neat, cm<sup>-1</sup>): 3358 (s), 1719 (s), 1657 (s), 1618 (s), 1593 (s), 1557 (w), 1572 (s), 1538 (s), 1495 (s), 1441 (m), 1406 (s), 1376 (s), 1326 (s), 1304 (w), 1249 (s), 1198 (s), 1177 (m), 1163 (s), 1108 (s), 1092 (m), 1040 (s), 924 (m), 875 (s), 854 (s), 833 (s), 812 (s), 752 (s), 702 (s), 666 (s), 643 (s), 574 (s), 556 (s).

**TBA(SMZU) Salt:** The crude HSMZU (42 mg, 0.1 mmol) was dissolved in DMF (5 ml). To this solution TBAF trihydrate (63 mg, 0.2 mmol) was added and stirred for 30 mins. The solution was filtered and kept for crystallization, which yielded crystalline **TBA(SMZU)**. The crystals were decanted and characterized (yield 85 %). IR (Neat cm<sup>-1</sup>): 2959 (s), 2874 (s), 1719 (s), 1609 (s), 1592 (s), 1543 (s), 1494 (s), 1456 (s), 1404 (s), 1334 (s), 1314 (s), 1302(s), 1273 (s), 1246 (s), 1195 (s), 1175 (s), 1141(s), 1109(s), 1094(s), 1045(s), 1007(m), 931(s), 883(s), 851(s), 802(s), 750(s), 704(s), 645(s), 587(s), 566(s). <sup>1</sup>HNMR (600 MHz, DMSO-d<sub>6</sub>, ppm): 9.58(s, N-H), 9.12(s, N-H), 8.19 (d, J = 9 Hz, 2H), 7.70 (d, J = 9 Hz, 2H), 7.58 (d, J = 8 Hz, 2H), 7.42 (d, J = 9 Hz, 2H), 5.78 (s, 1H), 3.16 (t, J = 8 Hz, 8H), 1.59- 1.54 (m, 8H), 1.34- 1.27 (m, 8H), 0.93(t, J = 7 Hz, 12H). Same reaction with excess amounts of TBABr (5 mmol) instead of TBAF yielded the same salt.

**Synthesis of** butyl-**SMZU.TBAI:** A solution of refluxed tetrabutylammonium iodide (185 mg, 0.5 mmol) and H**SMZU** (42 mg, 0.1 mmol) in DMF (10 ml) was stirred at 80 °C for 6 hs and the

resulting solution left undisturbed for 8 days yielded crystals of the salt. The supernatant liquid was decanted and the crystals were dried by pressing filter paper (yield 49 %). IR (Neat, cm<sup>-1</sup>): 2958 (s), 2934 (w), 2873(m), 1713 (s), 1611 (m), 1590 (s), 1560 (s), 1539 (s), 1508(s), 1493 (s), 1448 (s), 1405(m), 1374(m), 1341 (s), 1314 (m), 1304 (s), 1247 (s), 1198 (s), 1162 (s), 1113 (s), 1092 (s), 1027 (s), 925 (w), 882 (s), 856 (s), 827 (m), 804 (m), 749 (s), 712 (s), 678 (s), 645 (s), 594 (s), 569 (s), 556 (s). <sup>1</sup>HNMR (600 MHz, DMSO-d<sub>6</sub>, ppm): 9.59 (s, N-H), 9.45 (s, N-H), 8.21 (d, J = 9 Hz, 2H), 7.77 (d, J = 8 Hz, 2H), 7.70 (d, J = 10 Hz, 2H), 7.68 (d, J = 9 Hz, 2H), 6.44 (s, 1H), 3.69 (t, J = 7 Hz, 3H), 3.18-3.15 (t, J = 8 Hz, 8H), 2.37 (s, 3H), 1.59-1.54 (m, 10H), 1.34-1.28 (m, 10H), 0.94(t, J = 7Hz, 12H), 0.87 (t, J = 7 Hz, 3H). <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>): 170.8, 159.2, 151.7, 145.8, 144.1, 141.4, 130.4, 128.4, 125.2, 118.3, 117.9, 97.8, 57.5, 48.1, 29.8, 23.1, 19.2, 13.5, 12.2.

**HSTZU.DMF:** A solution of 4-nitrophenylisocyanate (328 mg, 2 mmol) (20 ml), sulfathiazole (511 mg, 2 mmol) in dry acetonitrile (20 ml) was stirred for 8 h. This yielded yellow precipitate, which was filtered. It was dissolved in DMF (3 ml) and kept undisturbed condition for crystallization. Needle shaped crystals of H**STZU.DMF** were formed after 2-3 days (yield, 81 %). IR (Neat cm<sup>-1</sup>) : 3093 (bs), 1725 (s), 1651 (s), 1588 (s), 1567 (s), 1526 (s), 1492 (s), 1414 (s), 1331 (s), 1301 (s), 1249 (s), 1190 (s), 1173 (s), 1145 (s), 1102 (s), 1087 (s), 927 (s), 851 (s), 828 (s), 733 (s), 711 (s), 690 (s), 669 (s), 649 (s), 631 (s), 602 (s), 575 (s), 559 (s). <sup>1</sup>HNMR (600 MHz, DMSO-d<sub>6</sub>, ppm): 12.70 (s, 1H), 9.53 (s, N-H), 9.31 (s, N-H), 8.21 (d, J = 9 Hz, 2H ), 7.94 (s, 1H), 7.74 (d, J = Hz, 2H ), 7.70 (d, J = 9 Hz, 2H ), 7.61 (d, J = 9 Hz, 2H ), 7.24 (d, J = 5 Hz, 1H ), 6.82 (d, J = 4 Hz, 1H ), 2.88 (s, 3H ), 2.72 (s, 3H ). <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>): 168.8, 162.5, 151.9, 146.1, 142.5, 141.4, 135.6, 127.2, 125.3, 118.1, 117.9, 108.2, 35.9, 30.9.

HSTZU.DMSO: The HSTZU (42 mg, 0.1 mmol) was dissolved in DMSO (0.5 ml) in a plastic vial (1ml capacity) and left undisturbed for crystallization. Block type of crystals of HSTZU.DMSO were formed in a week. The crystals were collected by decanting the supernatant liquid. IR (Neat, cm<sup>-1</sup>) : 3101 (bs), 1716 (s), 1595 (s), 1538 (s), 1489 (s), 1435 (s), 1332 (s), 1299 (s), 1246 (s), 1195 (s), 1174 (s), 1143 (s), 1113 (s), 1088 (s), 1011 (s), 939 (s), 849 (s), 733 (s), 709 (s), 652 (s), 631 (s), 576 (s), 552 (s). <sup>1</sup>HNMR (600 MHz, DMSO-d<sub>6</sub>, ppm): 12.67 (s, 1H), 9.51(s, N-H), 9.29 (s, N-H), 8.21 (d, J = 9 Hz, 2H), 7.74 (d, J = 8 Hz, 2H ), 7.70 (d, J = 9 Hz, 2H ), 7.60 (d, J = 9 Hz), 7.24 (d, J = 4 Hz, 1H ), 6.82 (d, J = 4 Hz, 1H ), 2.54 (s, 6H

). <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>): 168.7, 151.8, 145.9, 142.4, 141.3, 135.6, 127.1, 125.2, 124.4, 118.0, 117.8, 108.1.

**HSTZU.TBAI:** Cocrystal of H**STZU** with tetrabutylammonium iodide was prepared by stirring a mixture of H**STZU** (42 mg, 0.1 mmol) with ten equivalents amounts of TBAI (369 mg, 1 mmol) in DMF (10ml) for 5 mins at room temperature. The mixture was filtered and filtrate was kept in open air for slow evaporation to obtain the crystals of H**STZU.TBAI** after 12 days (yield 53 %). IR (Neat, cm<sup>-1</sup>): 2958 (m), 2870 (m), 1713 (s), 1590 (s), 1560 (s), 1536 (s), 1493 (s), 1411 (s), 1302 (s), 1245 (s), 1196 (s), 1146 (s), 1112 (s), 1087 (s), 934 (s), 854 (s), 740 (s), 702 (s), 650 (s), 634 (s), 574 (s), 558 (s). <sup>1</sup>HNMR (600 MHz, DMSO-d<sub>6</sub>, ppm): 12.67 (s, 1H ), 9.52 (s, N-H ), 9.29 (s, N-H ), 8.20 (d, J = 9 Hz, 2H ), 7.73 (d, J = 8 Hz, 2H ), 7.69 (d, J = 9 Hz, 2H ), 7.60 (d, J = 8 Hz, 2H ), 7.24 (d, J = 5 Hz, 1H ), 6.81 (d, J = 4 Hz, 1H ), 3.15 (t, 8H ), 1.59- 1.54 (m, 8H ), 1.34- 1.28 (m, 8H ), 0.93 (t, 12H ). <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>): 168.7, 151.8, 145.9, 142.4, 141.3, 135.6, 127.1, 125.2, 124.4, 117.9, 117.8, 108.1, 57.5, 23.1, 19.2, 13.5.

**TBA(STZU) :** A solution of tetrabutylammonium fluoride trihydrate (63 mg, 0.2 mmol) HSTZU (42 mg, 0.1 mmol) in DMF (5 ml) was stirred for 1 h to obtain **TBA(STZU)** as a white precipitate. IR (Neat cm<sup>-1</sup>) : 2959 (m), 2872 (m), 1709 (s), 1657 (s), 1592 (s), 1539 (s), 1495 (s), 1433 (s), 1304 (s), 1266 (m), 1233 (s), 1201 (s), 1178 (s), 1164 (m), 1141 (s), 1091 (s), 948 (s), 856 (s), 842 (s), 752 (s), 736 (s), 697 (s), 655 (s), 644 (s), 618 (s), 576 (s), 560 (s). <sup>1</sup>HNMR (600 MHz, DMSO-d<sub>6</sub>, ppm): 9.61 (s, N-H), 9.17 (s, N-H), 8.18 (d, J = 9 Hz, 2H), 7.69 (d, J = 9 Hz, 2H), 7.63 (d, J = 8 Hz, 2H), 7.42 (d, J = 9 Hz, 2H), 6.920 (d, J = 4 Hz, 1H), 6.43 (d, J = 4 Hz, 1H), 3.16 (t, 8H), 1.59- 1.54 (m, 8H), 1.33- 1.27 (m, 8H), 0.93 (t, 12H). <sup>13</sup>C NMR (125 MHz, DMSO-d<sub>6</sub>): 169.6, 151.8, 146.3, 141.1, 140.4, 139.7, 136.9, 126.9, 125.1, 117.6, 117.4, 107.1, 57.5, 23.1, 19.2, 13.5.

All the solvates and cocrystals were stable at room temperature under ambient conditions at least for a week.



Scheme S1: A plausible mechanism of the C-N bond formation from reaction of HSTZU with TBAI

| Solvate/salt/cocrystal | D-H…A (Symmetry)                                 | $d_{\text{D-H}}\left(\text{\AA}\right)$ | $d_{H^{\cdots}A}(\text{\AA})$ | $d_{D^{\cdots}A}(\text{\AA})$ | ∠D-H…A (°) |
|------------------------|--------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------------|------------|
| HSMZU.DMF-P1           | N(2) -H(2N) ···O(7) [1/2-x, 1/2+y, 1/2 -z]       | 0.80(4)                                 | 2.15(4)                       | 2.897(6)                      | 155(4)     |
|                        | N(3) -H(3N) $\cdots$ O(7) [1/2-x, 1/2+y, 1/2 -z] | 0.77(4)                                 | 2.12(4)                       | 2.839(6)                      | 156(4)     |
|                        | N(4) -H(4N) $\cdots$ O(5) [1+x, y, z]            | 0.85(4)                                 | 2.27(4)                       | 3.091(4)                      | 163(4)     |
|                        | C(2)-H(2) ····O(3) [2-x, 1-y, -z]                | 0.93                                    | 2.56(5)                       | 3.455(5)                      | 161        |
|                        | $C(9)-H(9) \cdots O(1) [2-x, 1-y, -z]$           | 0.93                                    | 2.53                          | 3.234(5)                      | 133        |
|                        | C(15)-H(15)N(5) [-1+x, y, z]                     | 0.93                                    | 2.30                          | 3.198(5)                      | 161        |
|                        | C(19)-H(19C) O(2) [-x, 1- y, -z]                 | 0.96                                    | 2.37                          | 3.151(19)                     | 138        |
| HSMZU.DMF-P2           | N(2) -H(2N) ···O(5)) [-x, 1-y, -z]               | 0.86                                    | 2.21                          | 2.975(3)                      | 148        |
|                        | N(3) -H(3N) …N(5) [-x, 1-y, -z]                  | 0.86                                    | 2.19                          | 3.050(3)                      | 174        |
|                        | N(4) -H(4N) $\cdots$ O(7) [-1+x,1+y, z]          | 0.86                                    | 1.99                          | 2.704(3)                      | 139        |
|                        | C(2) -H(2A)O(3) [1-x, 1-y, 1-z]                  | 0.93                                    | 2.57                          | 3.424(3)                      | 152        |
|                        | C(15) -H(15)O(2) [-1+x,1+y, z]                   | 0.93                                    | 2.54                          | 3.331(4)                      | 142        |
| TBA(SMZU)              | N(2) -H(2N)N(4) [1+x, y, z]                      | 0.86                                    | 2.28                          | 3.081(3)                      | 162        |
|                        | N(3) -H(3N)N(4) [1+x, y, z]                      | 0.86                                    | 2.09                          | 2.928(3)                      | 159        |
|                        | C(9) -H(9)O(1) [2-x, 1-y, 1-z]                   | 0.93                                    | 2.50                          | 3.192(3)                      | 172        |
|                        | C(17) -H(17B)O(5) [1-x, 1-y, -z]                 | 0.96                                    | 2.42                          | 3.322(4)                      | 153        |
|                        | C(22) –H(22A)O(4) [x, y, z]                      | 0.97                                    | 2.39                          | 3.340(3)                      | 166        |

| butyl-SMZU.TBAI | N(2) -H(2N)I1 [-1+x, y, z]              | 0.86    | 2.77    | 3.594(4)  | 163    |
|-----------------|-----------------------------------------|---------|---------|-----------|--------|
|                 | N(3) -H(3N)I1 [-1+x, y, z]              | 0.86    | 2.75    | 3.569(5)  | 160    |
|                 | C(33) -H(33B) O(4) [x, 1+y, z]          | 0.97    | 2.35    | 3.294(6)  | 163    |
|                 | C(34) -H(34BB) O(1) [1-x, 2-y, 1-z]     | 0.97    | 2.42    | 3.326(7)  | 156    |
|                 | C(37) –H(37B) O(2) [-x, 2-y, 1-z]       | 0.97    | 2.49    | 3.40(3)   | 156    |
| HSTZU.DMF       | N(2) -H(2N) $\cdots$ O(6)) [1+x, y, z]  | 0.77    | 2.13    | 2.843(5)  | 154    |
|                 | N(3) -H(3N) $\cdots$ O(6) [1+x, y, z]   | 0.77    | 2.17    | 2.881(5)  | 152    |
|                 | $N(5) -H(5N) \cdots N(4) [-x, 1-y, -z]$ | 0.85    | 2.04    | 2.896(5)  | 177    |
|                 | C(9) -H(9) O(1) [1-x, 1-y, 1-z]         | 0.93    | 2.55    | 3.187(6)  | 126    |
|                 | C(18) -H(18C) S(2) [1/2+x, 1/2-y 1/2+z] | 0.96    | 2.83    | 3.591(6)  | 137    |
| HSTZU.DMSO      | N(2) -H(2N) ···O(6)) [x, 1/2-y, -1/2+z] | 1.01(5) | 1.94(5) | 2.913(8)  | 160(4) |
|                 | N(3) -H(3N) ···O(6) [x, 1/2-y, -1/2+z]  | 0.90(5) | 2.08(5) | 2.907(8)  | 153(4) |
|                 | N(5) -H(5N) ····N(4) [-x, 1-y, -z]      | 0.97(5) | 1.88(5) | 2.838(9)  | 173(4) |
|                 | C(2) -H(2)O(1) [1-x, 1/2+y, 1/2-z]      | 0.93    | 2.52    | 3.216(11) | 132    |
|                 | C(3) -H(3)O(2) [1-x, -2-y, -z]          | 0.93    | 2.42    | 3.328(11) | 166    |
|                 | C(17) -H(17B)O(3) [x, y, z]             | 0.96    | 2.46    | 3.335(10) | 152    |
| HSTZU.TBAI      | N(2) -H(2N) $\cdots$ I(1)) [1+x, y, z]  | 0.79(6) | 2.93(6) | 3.669(6)  | 159(6) |
|                 | $N(3) - H(3N) \cdots I(1) [1+x, y, z]$  | 0.71(5) | 2.83(5) | 3.511(7)  | 160(5) |
|                 | N(5) -H(5N) ··· N(4) [1-x, 1-y, -z]     | 0.83(7) | 2.04(7) | 2.854(8)  | 166(5) |
|                 | C(20) -H(20B)O(2) [1-x, -y, 1-z]        | 0.97    | 2.50    | 3.436(8)  | 162    |
|                 | C(21) -H(21B)O(5) [x, -1+y, z]          | 0.97    | 2.30    | 3.253(8)  | 168    |
|                 |                                         |         |         |           |        |

| Table S2: Torsion angle | s of solvates, ionic coc | rystals and salts of HS | SMZU         |
|-------------------------|--------------------------|-------------------------|--------------|
| 45                      | Torsion angle(°)         | HSMZU.DMF-P2            | HSMZU.DMF-P1 |
| 13                      | C13-S1-N4-C14            | 57.6(2)                 | 60.6(4)      |
| 4H N 14 N               | C13-S1-N4-H4N            | -122.4                  | -86(3)       |
|                         | H4N-N4-C14-C15           | 23.6                    | 179(3)       |
|                         | H4N-N4-C14-N5            | -154.8                  | -2(3)        |

| Table S3: Torsion angles of solvates of HSTZU |                   |           |            |  |
|-----------------------------------------------|-------------------|-----------|------------|--|
| HN                                            | Torsion angles(°) | HSTZU.DMF | HSTZU.DMSO |  |
| 4.14                                          | C13-S1-N4-C14     | 79.6(7)   | 84.5(5)    |  |
| 40                                            | S1-N4-C14-N5      | -178.9(6) | -173.3(4)  |  |
|                                               | S1-N4-C14-S2      | 4(1)      | 8.2(8)     |  |
|                                               | O4-S1-N4-C14      | -168.9(6) | -32.2(5)   |  |
|                                               | O5-S1-N4-C14      | -37.6(7)  | -163.4(4)  |  |



Figure S1: ORTEP diagram of HSMZU.DMF-P1 drawn with 50% ellipsoid probability.



Figure S2: Powder X-ray diffraction patterns of the HSMZU.DMF-P1.



Figure S3: FT-IR spectrum (neat) of the HSMZU.DMF-P1.



Figure S4: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the HSMZU.DMF-P1.



Figure S5: <sup>1</sup>HNMR (DMSO-d6, 600 MHz) spectra of the HSMZU.



Figure S6: <sup>1</sup>H-2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the HSMZU.DMF-P1.



Figure S7: <sup>13</sup>CNMR (125 MHz, DMS Figure S6: <sup>1</sup>H-2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the HSMZU.DMF-P1.



Figure S8: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the HSMZU.DMF-P1.



Figure **S9**: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the **HSMZU.DMF-P1** at variable temperatures.



Figure S10: Variable temperature <sup>1</sup>HNMR spectra (DMSO-d<sub>6</sub>, 600 MHz) of HSMZU.DMF-P1 with 10 equivalent of TBAI showing C-N bond formation to form the butyl-SMZU.TBAI (In in situ in the reaction mixture. {As per the Scheme S1 there are three types of butyl environments from the three compounds in the reaction mixture which are N<sup>+</sup>(CH<sub>2</sub><sup>a</sup>CH<sub>2</sub><sup>b</sup>CH<sub>2</sub><sup>c</sup>CH<sub>3</sub><sup>d</sup>)<sub>4</sub>I, (CH<sub>2</sub><sup>a'</sup>CH<sub>2</sub><sup>b'</sup>CH<sub>2</sub><sup>c'</sup>CH<sub>3</sub><sup>d'</sup>)-SMZU and N(CH<sub>2</sub><sup>a''</sup>CH<sub>2</sub><sup>b''</sup>CH<sub>2</sub><sup>c''</sup>CH<sub>3</sub><sup>d''</sup>)<sub>3</sub>. The protons from the CH<sub>2</sub><sup>b</sup>CH<sub>2</sub><sup>c'</sup>, CH<sub>2</sub><sup>b''</sup>CH<sub>2</sub><sup>c''</sup> are indistinguishable as they overlap each other; the peaks with \* (red asterisk) are from CH<sub>2</sub><sup>a'</sup> and CH<sub>2</sub><sup>a''</sup> and with \* (violet asterisk) are from are from CH<sub>3</sub><sup>d''</sup> and CH<sub>3</sub><sup>d''</sup> respectively. The peak at 11.17 marked with \*(blue asterisk) is from the N-H next to the heterocycle).



Figure S11: <sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>) titration of HSMZU.DMF-P1 by adding different amounts of tetrabutylammonium (a) chloride and (b) bromide (showing the aromatic protons of HSMZU.DMF-P1).



Figure S12: ORTEP diagram of HSMZU.DMF-P2 drawn with 50% ellipsoid probability.



Figure S13 : Powder X-ray diffraction patterns of the HSMZU.DMF-P2.



Figure S14: FT-IR spectrum (neat) of the HSM Figure S13: Powder X-ray diffraction patterns of the HSMZU.DMF-P2.



Figure S15 : Hirshfeld surfaces of (d) HSMZU.DMF-P1, (e) HSMZU.DMF-P2, (f) TBA(SMZU)



Figure S16: ORTEP diagram of TBA(SMZU) drawn with 50% ellipsoid probability.



Figure S17: Powder X-ray diffraction patterns of the TBA(SMZU).







Figure S19: <sup>1</sup>H 2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the TBA(SMZU).



Figure S20: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the TBA(SMZU). Figure S18: <sup>1</sup>H 2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the TBA(SMZU).



Figure S21: ORTEP diagram of butyl-SMZU.TBAI drawn with 50% ellipsoid probability.



Figure S22: Powder X-ray diffraction patterns of the butyl-SMZU.TBAI



Figure S23: FT-IR spectrum (neat) of the butyl-SMZU.TBAI.



Figure S24: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the butyl-SMZU.TBAI.



Figure S25: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the butyl-SMZU.TBAI.



Figure S26: ESI mass spectrum of the butyl-SMZU.



Figure S27: ORTEP diagram of HSTZU.DMF drawn with 50% ellipsoid probability.



Figure S28: Powder X-ray diffraction patterns of the HSTZU.DMF.



Figure S29: FT-IR spectrum (neat) of the HSTZU.DMF.



Figure S30: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz,) spectra of the HSTZ.DMF.



Figure S31: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the HSTZ.DMF.





Figure **S32**: <sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>) titration showing the aromatic protons of H**STZU.DMF** recorded by adding different amounts of tetrabutylammonium (a) chloride and (b) bromide.



Figure S33: ORTEP diagram of HSTZU.DMSO drawn with 50% ellipsoid probability.



Figure S34: Powder X-ray diffraction patterns of the HSTZU.DMSO.



Figure S35: FT-IR spectrum (neat) of the HSTZU.DMSO.



Figure **S36**: <sup>1</sup>H 2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the H**STZU** .DMSO.



Figure **S37**: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz,) spectra of the H**STZU.DMSO**.



Figure S38: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the HSTZU.DMSO.



Figure S39: ORTEP diagram of HSTZU.TBAI with 50 % ellipsoid probability.



Figure S40: Powder X-ray diffraction patterns of the HSTZU.TBAI.



Figure S41: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the HSTZU.TBAI.



Figure S42: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the HSTZU.TBAI.



Figure S43: FT-IR spectrum (neat) of the TBA(STZU).



Figure S44: <sup>1</sup>H 2D-HOMOCOSY (600 MHz, DMSO-d<sub>6</sub>) spectrum of the TBA(STZU).



Figure S45: <sup>1</sup>HNMR (DMSO-d<sub>6</sub>, 600 MHz) spectra of the TBA(STZU).





Figure S46: <sup>13</sup>CNMR (125 MHz, DMSO-d<sub>6</sub>) spectra of the TBA(STZU).

Figure S47: Thermogram of the polymorph (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2.



Figure **S48**: Differential scanning calorimetry of (a) HSTZU.DMF (b) HSTZU.DMSO (heating rate 10°C/min under nitrogen atmosphere).





(c)

Figure S49: Hirshfeld surfaces of (a) HSTZU.DMF (b) HSTZU.DMSO, (c) HSTZU.TBAI.



Figure S50: Percentages of the H···C, H···H, H···O, H···N, H···S and H···anion interaction (include reciprocal contacts) in 2D fingerprint plots



Figure **S51**: 2D fingerprint plots (including reciprocal contacts) of the H…C, H…H, H…O, H…N and H…anion interactions of a) HSMZU.DMF-P1 b) HSMZU.DMF-P2 c) TBA(SMZU).



Figure S52: 2D fingerprint plots (including reciprocal contacts) of the  $H \cdots C$ ,  $H \cdots H$ ,  $H \cdots O$ ,  $H \cdots N$  and  $H \cdots$  anion interactions of (a) HSTZU.DMF (b) HSTZU.DMSO (c) HSTZU.TBAI.



Figure S53: Changes in the UV-visible spectra of (a) HSTZU and (b) HSMZU  $(3.3 \times 10^{-5} \text{ M}, 2\text{mL} \text{ in each case})$  in dimethylsulfoxide by aliquots (30 µL) of tetrabutylammonium fluoride  $(10^{-2} \text{ M}).$ 



Figure S54: Visual color change of a) HSMZU b) HSTZU after addition of TBAF and TBABr respectively.







(d)





(f)





(h)





(k)

Figure S55: HOMO and LUMO gap in the (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2 (c) TBA(SMZU), (d) HSTZU.DMF (e) HSMZU-P1 (f) HSMZU-P2 (g) dimer of HSMZU-P1 (h) dimer of HSMZU-P2 (i) dimer of TBA(SMZU) (j) dimer of HSTZU.DMF (k) HSMZU.DMSO calculated by DFT using B3LYP/6-31+G (d, p) as basis set.