Supporting Information

Polymorphic Solvates, Ionic-cocrystals and C-N Bond Formation to Form Ionic Cocrystal In Sulfamethoxazole and Sulfathiazole Derived Urea

Jitendra Nath, Jubaraj B. Baruah*

Content list

[^0]Figure S31: ${ }^{13} \mathrm{CNMR}$ (125 MHz , DMSO- d_{6}) spectra of the HSTZ.DMF
Figure S32: ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) titration showing the aromatic protons of HSTZU.DMF recorded by adding different amounts of tetrabutylammonium (a) chloride and (b) bromide
Figure S33: ORTEP diagram of HSTZU.DMSO drawn with 50\% ellipsoid probability.
Figure S34: Powder X-ray diffraction patterns of the HSTZU.DMSO
Figure S35: FT-IR spectrum (neat) of the HSTZU.DMSO
Figure S36: ${ }^{1} \mathrm{H}$ 2D-HOMOCOSY (600 MHz , DMSO- d_{6}) spectrum of the HSTZU.DMSO
Figure S37: ${ }^{1} \mathrm{HNMR}$ (DMSO- $\mathrm{d}_{6}, 600 \mathrm{MHz}$,) spectra of the HSTZU.DMSO
Figure S38: ${ }^{13} \mathrm{CNMR}$ (125 MHz , DMSO- d_{6}) spectra of the HSTZU.DMSO
Figure S39: ORTEP diagram of HSTZU.TBAI drawn with 50% ellipsoid probability.
Figure S40: Powder X-ray diffraction patterns of the HSTZU.TBAI.
Figure S41: ${ }^{1} \mathrm{HNMR}$ (DMSO- $\mathrm{d}_{6}, 600 \mathrm{MHz}$) spectra of the HSTZU.TBAI
Figure S42: ${ }^{13} \mathrm{CNMR}$ (125 MHz , DMSO- d_{6}) spectra of the HSTZU.TBAI
Figure S43: FT-IR spectrum (neat) of the TBA(STZU)
Figure S44: ${ }^{1} \mathrm{H} 2 \mathrm{D}-\mathrm{HOMOCOSY}\left(600 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right)$ spectrum of the TBA(STZU).
Figure S45: ${ }^{1} \mathrm{HNMR}$ (DMSO- $\mathrm{d}_{6}, 600 \mathrm{MHz}$) spectra of the TBA(STZU)
Figure S46: ${ }^{13} \mathrm{CNMR}$ (125 MHz , DMSO- d_{6}) spectra of the TBA(STZU)
Figure S47: Thermogram of the polymorph (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2
Figure S48: Differential scanning calorimetry of (a) HSTZU.DMF (b) HSTZU.DMSO (heating rate $10^{\circ} \mathrm{C} / \mathrm{min}$ under nitrogen atmosphere) .
Figure S49: Hirshfeld surfaces of (a) HSTZU.DMF (b) HSTZU.DMSO, (c)
HSTZU.TBAI
Figure S50: Percentages of the $\mathrm{H}^{\cdots} \mathrm{C}, \mathrm{H}^{\cdots} \mathrm{H}, \mathrm{H} \cdots \mathrm{O}, \mathrm{H} \cdots \mathrm{N}, \mathrm{H} \cdots \mathrm{S}$ and $\mathrm{H} \cdots$ anion interaction (include reciprocal contacts) in 2D fingerprint plots
Figure S51: 2D fingerprint plots (including reciprocal contacts) of the $\mathrm{H}^{\cdots} \mathrm{C}, \mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O}$, $\mathrm{H}^{\cdots} \mathrm{N}$ and H^{\cdots} anion interactions of a) HSMZU.DMF-P1 b) HSMZU.DMF-P2 c) TBA(SMZU).
Figure S52: 2D fingerprint plots (including reciprocal contacts) of the $\mathrm{H}^{\cdots} \mathrm{C}, \mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O}$, $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{H} \cdots$ anion interactions of (a) HSTZU.DMF (b) HSTZU.DMSO (c)
HSTZU.TBAI
Figure S53: Changes in the UV-visible spectra of (a) HSTZU and (b) HSMZU (3.3 $\times 10^{-5}$
$\mathrm{M}, 2 \mathrm{~mL}$ in each case) in dimethylsulfoxide by aliquots ($30 \mu \mathrm{~L}$) of tetrabutylammonium fluoride ($10^{-2} \mathrm{M}$)
Figure S54: Visual color change of a) HSMZU b) STZU after addition of TBAF and TBABr respectively.
Figure S55: HOMO and LUMO gap (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2 (c) TBA(SMZU), (d) HSTZU.DMF (e) HSMZU-P1 (f) HSMZU-P2 (g) dimer of HSMZUP1 (h) dimer of HSMZU-P2 (i) dimer of TBA(SMZU) (j) dimer of HSTZU.DMF (k) HSMZU.DMSO calculated by DFT using B3LYP/6-31+G (d, p) as basis set

Synthesis and characterization of the hosts, solvates, cocrystals and salts:

HSMZU.DMF-P1: A solution of 4-nitrophenylisocyanate (328 mg, 2 mmol) and sulfamethoxazole ($507 \mathrm{mg}, 2 \mathrm{mmol}$) in acetonitrile (30 ml) was refluxed for 2 hs after which the reaction mixture was stirred at room temperature for about 6 hs . This had resulted in the formation of a yellow precipitate. This precipitate was filtered and it was dissolved in 3 ml DMF.

The solution thus prepared was kept undisturbed, which provided the crystals of HSMZU.DMFP1 yield = 76 \%. IR (Neat, cm^{-1}): 3272 (w), 3135 (w) 1724 (s), 1657 (s), 1615 (s), 1590 (s), 1574 (s), 1542 (s), 1495 (s), 1468 (s), 1409 (s), 1374 (s), 1384 (s), 1333 (m), 1317(s), 1251 (s), 1197 (s), 1162 (s), 1106 (s), 1091 (s), 1028 (m), 928 (s), 885 (s), 854 (s), 843 (m), 831 (s), 751 (s), 715 (s), 667 (s), 645 (s), 579 (s), 556 (s). ${ }^{1}$ HNMR (600 MHz, DMSO-d $_{6}, \mathrm{ppm}$): 11.31 (s, 1H), 9.57 (s, N-H), $9.39(\mathrm{~s}, \mathrm{~N}-\mathrm{H}), 8.21-8.20(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 7.70$ $(\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 7.67(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 170.3, 162.3, 157.6, 151.8, 145.9, 143.6, 141.4, 132.3, 128.2, 125.2, $118.2,117.8,95.4,35.8,30.7,12.1$.

HSMZU.DMF-P2: A solution of the crude yellow precipitate of SMZU ($103 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in DMF (10 ml) was stirred at $80^{\circ} \mathrm{C}$ for about 1 h . The solution was filtered to discard suspended material (if any) and it was kept undisturbed for crystallization. Upon standing for 8-10 days red block crystals of the HSMZU.DMF-P2 were obtained (yield 82%). IR (Neat, cm ${ }^{-1}$): 3358 (s), 1719 (s), 1657 (s), 1618 (s), 1593 (s), 1557 (w), 1572 (s), 1538 (s), 1495 (s), 1441 (m), 1406 (s), 1376 (s), 1326 (s), 1304 (w), 1249 (s), 1198 (s), 1177 (m), 1163 (s), 1108 (s), 1092 (m), 1040 (s), 924 (m), 875 (s), 854 (s), 833 (s), 812 (s), 752 (s), 702 (s), 666 ($), 643$ (s), 574 (s), 556 (s).

TBA(SMZU) Salt: The crude HSMZU ($42 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in DMF (5 ml). To this solution TBAF trihydrate ($63 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added and stirred for 30 mins . The solution was filtered and kept for crystallization, which yielded crystalline TBA(SMZU). The crystals were decanted and characterized (yield 85 \%). IR (Neat cm ${ }^{-1}$): 2959 (s), 2874 (s), 1719 (s), 1609 (s), 1592 (s), 1543 (s), 1494 (s), 1456 (s), 1404 (s), 1334 (s), 1314 (s), 1302(s), 1273 (s), 1246 (s), 1195 (s), 1175 (s), 1141(s), 1109(s), 1094(s), 1045(s), 1007(m), 931(s), 883(s), 851(s), 802(s), 750(s), 704(s), 645(s), 587(s), 566(s). ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}, \mathrm{ppm}\right): 9.58(\mathrm{~s}, \mathrm{~N}-$ H), 9.12(s, N-H), $8.19(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}$ $=9 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 8 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{t}$, $\mathrm{J}=7 \mathrm{~Hz}, 12 \mathrm{H})$. Same reaction with excess amounts of $\mathrm{TBABr}(5 \mathrm{mmol})$ instead of TBAF yielded the same salt.

Synthesis of butyl-SMZU.TBAI: A solution of refluxed tetrabutylammonium iodide (185 mg , 0.5 mmol) and HSMZU ($42 \mathrm{mg}, 0.1 \mathrm{mmol}$) in DMF (10 ml) was stirred at $80^{\circ} \mathrm{C}$ for 6 hs and the
resulting solution left undisturbed for 8 days yielded crystals of the salt. The supernatant liquid was decanted and the crystals were dried by pressing filter paper (yield 49%). IR (Neat, cm^{-1}): 2958 (s), 2934 (w), 2873(m), 1713 (s), 1611 (m), 1590 (s), 1560 (s), 1539 (s), 1508(s), 1493 (s), 1448 (s), 1405 (m), 1374(m), 1341 (s$), 1314$ (m), 1304 (s$), 1247$ (s), 1198 (s$), 1162$ (s$), 1113$ (s), 1092 (s), 1027 (s), 925 (w), 882 (s), 856 (s), 827 (m), 804 (m), 749 (s), 712 (s), 678 (s), 645 (s), 594 (s), 569 (s), 556 (s). ${ }^{1} \mathrm{HNMR}$ ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$, ppm): 9.59 (s, N-H), 9.45 (s, N-H), 8.21 (d, J = 9 Hz, 2H), $7.77(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}$, $1 \mathrm{H}), 3.69$ (t, J = $7 \mathrm{~Hz}, 3 \mathrm{H}$), 3.18-3.15 (t, J = $8 \mathrm{~Hz}, 8 \mathrm{H}$), 2.37 (s, 3H), 1.59-1.54 (m, 10H), 1.34$1.28(\mathrm{~m}, 10 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 12 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$): $170.8,159.2,151.7,145.8,144.1,141.4,130.4,128.4,125.2,118.3,117.9,97.8,57.5,48.1,29.8$, 23.1, 19.2, 13.5, 12.2.

HSTZU.DMF: A solution of 4-nitrophenylisocyanate ($328 \mathrm{mg}, 2 \mathrm{mmol}$) (20 ml), sulfathiazole $(511 \mathrm{mg}, 2 \mathrm{mmol})$ in dry acetonitrile $(20 \mathrm{ml})$ was stirred for 8 h . This yielded yellow precipitate, which was filtered. It was dissolved in DMF (3 ml) and kept undisturbed condition for crystallization. Needle shaped crystals of HSTZU.DMF were formed after 2-3 days (yield, 81 \%). IR (Neat cm ${ }^{-1}$) : 3093 (bs), 1725 (s), 1651 (s), 1588 (s), 1567 (s), 1526 (s), 1492 (s), 1414 (s), 1331 (s), 1301 (s), 1249 (s), 1190 (s), 1173 (s), 1145 ((s), 1102 (s), 1087 (s), 927 (s), 851 (s), 828 (s), 733 (s), 711 (s), 690 (s), 669 (s), 649 (s), 631 (s), 602 (s), 575 (s), 559 (s). ${ }^{1}$ HNMR (600 MHz, DMSO-d $\left._{6}, \mathrm{ppm}\right): 12.70(\mathrm{~s}, 1 \mathrm{H}), 9.53$ (s, N-H), $9.31(\mathrm{~s}, \mathrm{~N}-\mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.94$ $(\mathrm{s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=\mathrm{Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}$, 1 H), $6.82(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 168.8$, $162.5,151.9,146.1,142.5,141.4,135.6,127.2,125.3,118.1,117.9,108.2,35.9,30.9$.

HSTZU.DMSO: The HSTZU (42 mg, 0.1 mmol) was dissolved in DMSO (0.5 ml) in a plastic vial (1 ml capacity) and left undisturbed for crystallization. Block type of crystals of HSTZU.DMSO were formed in a week. The crystals were collected by decanting the supernatant liquid. IR (Neat, cm^{-1}) : 3101 (bs), 1716 (s), 1595 (s), 1538 (s), 1489 (s), 1435 (s), 1332 (s), 1299 (s), 1246 (s), 1195 (s), 1174 (s), 1143 (s), 1113 (s), 1088 (s), 1011 (s), 939 (s), 849 (s), 733 (s), 709 (s), 652 (s), 631 (s), 576 (s), 552 (s). ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}\right.$, DMSO-d $_{6}, \mathrm{ppm}$): 12.67 (s, 1H), $9.51(\mathrm{~s}, \mathrm{~N}-\mathrm{H}), 9.29$ (s, N-H), 8.21 (d, J = $9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (d, J = $8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.70 $(\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 7.24(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 6 \mathrm{H}$
) . ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{-}$): 168.7, 151.8, 145.9, 142.4, 141.3, 135.6, 127.1, 125.2, 124.4, 118.0, 117.8, 108.1 .

HSTZU.TBAI: Cocrystal of HSTZU with tetrabutylammonium iodide was prepared by stirring a mixture of HSTZU ($42 \mathrm{mg}, 0.1 \mathrm{mmol}$) with ten equivalents amounts of TBAI ($369 \mathrm{mg}, 1$ mmol) in DMF (10 ml) for 5 mins at room temperature. The mixture was filtered and filtrate was kept in open air for slow evaporation to obtain the crystals of HSTZU.TBAI after 12 days (yield 53 \%). IR (Neat, cm ${ }^{-1}$): 2958 (m), 2870 (m), 1713 (s), 1590 (s), 1560 (s), 1536 (s$), 1493$ (s), 1411 (s), 1302 (s), 1245 (s), 1196 (s), 1146 (s), 1112 (s), 1087 (s), 934 (s), 854 (s), 740 (s), 702 (s), 650 (s), 634 (s), 574 (s), 558 (s). ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}\right.$, DMSO-d $_{6}, \mathrm{ppm}$): 12.67 ($\mathrm{s}, 1 \mathrm{H}$), 9.52 ($\mathrm{s}, \mathrm{N}-$ H), 9.29 ($\mathrm{s}, \mathrm{N}-\mathrm{H}$), $8.20(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60$ $(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{t}, 8 \mathrm{H}), 1.59-1.54(\mathrm{~m}$, 8H), 1.34-1.28 (m, 8H), 0.93 (t, 12H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d d_{6} : 168.7, 151.8, 145.9, $142.4,141.3,135.6,127.1,125.2,124.4,117.9,117.8,108.1,57.5,23.1,19.2,13.5$.

TBA(STZU) : A solution of tetrabutylammonium fluoride trihydrate ($63 \mathrm{mg}, 0.2 \mathrm{mmol}$) HSTZU ($42 \mathrm{mg}, 0.1 \mathrm{mmol}$) in DMF (5 ml) was stirred for 1 h to obtain TBA(STZU) as a white precipitate. IR (Neat cm ${ }^{-1}$) : 2959 (m), 2872 (m), 1709 (s), 1657 (s), 1592 (s), 1539 (s), 1495 (s), 1433 (s), 1304 (s), 1266 (m), 1233 (s), 1201 (s), 1178 (s), 1164 (m), 1141 (s), 1091 (s), 948 (s), 856 (s), 842 (s), 752 (s), 736 (s), 697 (s), 655 (s), 644 (s), 618 (s), 576 (s), 560 (s). ${ }^{1}$ HNMR (600 MHz, DMSO- $\left.{ }_{6}, \mathrm{ppm}\right)$: 9.61 (s, N-H), 9.17 ($\mathrm{s}, \mathrm{N}-\mathrm{H}$), 8.18 (d, J = $9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (d, J = 9 Hz , 2H), 7.63 (d, J = $8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.920(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{t}, 8 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{t}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d ${ }_{6}$): 169.6, 151.8, 146.3, 141.1, 140.4, 139.7, 136.9, 126.9, 125.1, 117.6, 117.4, 107.1, 57.5, 23.1, 19.2, 13.5.

All the solvates and cocrystals were stable at room temperature under ambient conditions at least for a week.

Scheme S1: A plausible mechanism of the C-N bond formation from reaction of HSTZU with TBAI

Table S1: Hydrogen bond parameters of solvates, cocrystals and salt.

Solvate/salt/cocrystal	D-H \cdots A (Symmetry)	$\mathrm{d}_{\mathrm{D}-\mathrm{H}}(\AA)$	$\mathrm{d}_{\mathrm{H} \cdots \mathrm{A}}(\AA)$	$\mathrm{d}_{\mathrm{D} \cdots \mathrm{A}}(\AA)$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
HSMZU.DMF-P1	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{O}(7)[1 / 2-x, 1 / 2+y, 1 / 2-z]$	0.80(4)	2.15(4)	2.897(6)	155(4)
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N}) \cdots \mathrm{O}(7)[1 / 2-x, 1 / 2+y, 1 / 2-z]$	0.77(4)	2.12(4)	2.839(6)	156(4)
	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~N}) \cdots \mathrm{O}(5)[1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$	0.85(4)	2.27(4)	3.091(4)	163(4)
	$\mathrm{C}(2)-\mathrm{H}(2) \cdots \mathrm{O}(3)[2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	0.93	2.56(5)	3.455(5)	161
	$\mathrm{C}(9)-\mathrm{H}(9) \cdots \mathrm{O}(1)[2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	0.93	2.53	3.234(5)	133
	$\mathrm{C}(15)-\mathrm{H}(15) \ldots \mathrm{N}(5)[-1+x, y, z]$	0.93	2.30	3.198(5)	161
	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C}) \ldots \mathrm{O}(2)[-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	0.96	2.37	$3.151(19)$	138
HSMZU.DMF-P2	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{O}(5))$ [-x, 1-y, -z]	0.86	2.21	2.975(3)	148
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N}) \cdots \mathrm{N}(5)[-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	0.86	2.19	3.050 (3)	174
	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~N}) \cdots \mathrm{O}(7)[-1+x, 1+y, z]$	0.86	1.99	2.704(3)	139
	$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(3)$ [1-x, 1-y, 1-z]	0.93	2.57	3.424(3)	152
	$\mathrm{C}(15)-\mathrm{H}(15) \ldots \mathrm{O}(2)[-1+\mathrm{x}, 1+\mathrm{y}, \mathrm{z}]$	0.93	2.54	$3.331(4)$	142
TBA(SMZU)	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \ldots \mathrm{N}(4)[1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$	0.86	2.28	3.081(3)	162
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N}) \ldots \mathrm{N}(4)[1+x, y, z]$	0.86	2.09	2.928(3)	159
	$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(1)[2-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}]$	0.93	2.50	3.192(3)	172
	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B}) \ldots \mathrm{O}(5)$ [1-x, 1-y, -z]	0.96	2.42	3.322(4)	153
	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A}) \ldots \mathrm{O}(4)[\mathrm{x}, \mathrm{y}, \mathrm{z}]$	0.97	2.39	3.340 (3)	166

butyl-SMZU.TBAI	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \ldots \mathrm{I} 11[-1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$	0.86	2.77	3.594(4)	163
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N}) \ldots \mathrm{I} 1$ [-1+x, y, z]	0.86	2.75	3.569(5)	160
	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B}) \ldots \mathrm{O}(4)[\mathrm{x}, 1+\mathrm{y}, \mathrm{z}]$	0.97	2.35	3.294(6)	163
	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{BB}) \ldots \mathrm{O}(1)$ [1-x, 2-y, 1-z]	0.97	2.42	$3.326(7)$	156
	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B}) \ldots \mathrm{O}(2)[-x, 2-y, 1-z]$	0.97	2.49	3.40 (3)	156
HSTZU.DMF	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{O}(6))$ [1+x, y, z]	0.77	2.13	2.843(5)	154
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N}) \cdots \mathrm{O}(6)[1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$	0.77	2.17	2.881(5)	152
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N}) \cdots \mathrm{N}(4)[-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	0.85	2.04	2.896(5)	177
	$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(1)$ [1-x, 1-y, 1-z]	0.93	2.55	$3.187(6)$	126
	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C}) \ldots \mathrm{S}(2)[1 / 2+x, 1 / 2-\mathrm{y} 1 / 2+\mathrm{z}]$	0.96	2.83	3.591 (6)	137
HSTZU.DMSO	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{O}(6))[\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}]$	1.01(5)	1.94(5)	2.913(8)	160(4)
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N}) \cdots \mathrm{O}(6)[\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}]$	0.90(5)	2.08(5)	2.907(8)	153(4)
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N}) \cdots \mathrm{N}(4)[-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	0.97(5)	1.88(5)	2.838(9)	173(4)
	$\mathrm{C}(2)-\mathrm{H}(2) \ldots \mathrm{O}(1)[1-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$	0.93	2.52	$3.216(11)$	132
	$\mathrm{C}(3)-\mathrm{H}(3) \ldots \mathrm{O}(2)$ [1-x, -2-y, -z]	0.93	2.42	$3.328(11)$	166
	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B}) \ldots \mathrm{O}(3)[\mathrm{x}, \mathrm{y}, \mathrm{z}]$	0.96	2.46	$3.335(10)$	152
HSTZU.TBAI	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{I}(1))[1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$	0.79(6)	2.93(6)	$3.669(6)$	159(6)
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N}) \cdots \mathrm{I}(1)[1+x, y, z]$	0.71(5)	2.83(5)	$3.511(7)$	160(5)
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~N}) \cdots \mathrm{N}(4)$ [1-x, 1-y, -z]	0.83(7)	2.04(7)	2.854(8)	166(5)
	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B}) \ldots \mathrm{O}(2)$ [1-x, -y, 1-z]	0.97	2.50	3.436(8)	162
	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B}) \ldots \mathrm{O}(5)[\mathrm{x},-1+\mathrm{y}, \mathrm{z}]$	0.97	2.30	3.253(8)	168

Table S2: Torsion angles of solvates, ionic cocrystals and salts of HSMZU

HN-	Torsion angles (${ }^{\circ}$)	HSTZU.DMF	HSTZU.DMSO
$4{ }^{14}$ 人 ${ }^{\text {S }}$	C13-S1-N4-C14	79.6(7)	84.5(5)
40 N^{1}	S1-N4-C14-N5	-178.9(6)	-173.3(4)
$\mathrm{O}_{2} \mathrm{~N}$	S1-N4-C14-S2	4(1)	8.2(8)
	O4-S1-N4-C14	-168.9(6)	-32.2(5)
	O5-S1-N4-C14	-37.6(7)	-163.4(4)

Figure S1: ORTEP diagram of HSMZU.DMF-P1 drawn with 50\% ellipsoid probability.

Figure S2: Powder X-ray diffraction patterns of the HSMZU.DMF-P1.

Figure S3: FT-IR spectrum (neat) of the HSMZU.DMF-P1.

Figure S4: ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{\mathrm{d}}{ }_{6}, 600 \mathrm{MHz}\right)$ spectra of the HSMZU.DMF-P1.

Figure S5: ${ }^{1} \mathrm{HNMR}$ (DMSO-d6, 600 MHz) spectra of the HSMZU.

Figure S6: ${ }^{1} \mathrm{H}-2 \mathrm{D}-\mathrm{HOMOCOSY}\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$) spectrum of the HSMZU.DMF-P1.

Figure S7: ${ }^{13} \mathrm{CNMR}$ (125 MHz , DMS Figure S6: ${ }^{1} \mathrm{H}-2 \mathrm{D}-\mathrm{HOMOCOSY}$ (600 MHz , DMSO- d_{6}) spectrum of the HSMZU.DMF-P1.

Figure S8: ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6}) spectra of the HSMZU.DMF-P1.

Figure S9: ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{-1} \mathrm{~d}_{6}, 600 \mathrm{MHz}\right.$) spectra of the HSMZU.DMF-P1 at variable temperatures.

Figure S10: Variable temperature ${ }^{1} \mathrm{HNMR}$ spectra ($\mathrm{DMSO}^{2} \mathrm{~d}_{6}$, 600 MHz) of HSMZU.DMF-P1 with 10 equivalent of TBAI showing $\mathrm{C}-\mathrm{N}$ bond formation to form the butyl-SMZU.TBAI (In in situ in the reaction mixture. \{As per the Scheme S 1 there are three types of butyl environments from the three compounds in the reaction mixture which are $\mathbf{N}^{+}\left(\mathbf{C H}_{\mathbf{2}}{ }^{\mathbf{a}} \mathbf{C H}_{\mathbf{2}}{ }^{\mathbf{b}} \mathbf{C H}_{\mathbf{2}}{ }^{\mathrm{c}} \mathbf{C H}_{3}{ }^{\mathrm{d}}\right)_{\mathbf{4}} \mathrm{I}$, $\left(\mathbf{C H}_{2}{ }^{a^{\prime}} \mathbf{C H}_{2}{ }^{\mathbf{b}^{\prime}} \mathbf{C H}_{2}{ }^{\mathbf{c}^{\prime}} \mathbf{C H}_{3}{ }^{\mathbf{d}^{\prime}}\right)-\mathbf{S M Z U}$ and $\mathbf{N}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{a}^{\prime \prime} \mathbf{C H}_{\mathbf{2}}{ }^{\mathbf{b}^{\prime \prime}} \mathbf{C H}_{\mathbf{2}}{ }^{\mathrm{c}^{\prime \prime}} \mathbf{C H}_{\mathbf{3}}{ }^{\mathbf{d}^{\prime \prime}}\right)_{3}$. The protons from the $\mathbf{C H}_{\mathbf{2}} \mathbf{}^{\mathbf{b}} \mathbf{C H}_{2}{ }^{\mathbf{c}}, \mathbf{C H}_{2}{ }^{\mathbf{b}} \mathbf{C H}_{\mathbf{2}} \mathbf{c}^{\prime}, \mathbf{C H}_{2}{ }^{\mathbf{b}}{ }^{\prime \prime} \mathbf{C H}_{2} \mathbf{c}^{\prime \prime}$ are indistinguishable as they overlap each other; the peaks with * (red asterisk) are from $\mathrm{CH}_{2}{ }^{\mathrm{a}^{\prime}}$ and $\mathrm{CH}_{2}{ }^{\mathrm{a}^{\prime \prime}}$ and with * (violet asterisk) are from are from $\mathrm{CH}_{3}{ }^{\mathrm{d}^{\prime}}$ and $\mathrm{CH}_{3}{ }^{\mathrm{d}^{\prime \prime}}$ respectively. The peak at 11.17 marked with *(blue asterisk) is from the $\mathrm{N}-\mathrm{H}$ next to the heterocycle).

Figure S11: ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) titration of HSMZU.DMF-P1 by adding different amounts of tetrabutylammonium (a) chloride and (b) bromide (showing the aromatic protons of HSMZU.DMF-P1).

Figure S12: ORTEP diagram of HSMZU.DMF-P2 drawn with 50% ellipsoid probability.

Figure S13 : Powder X-ray diffraction patterns of the HSMZU.DMF-P2.

Figure S14: FT-IR spectrum (neat) of the HSM Figure S13: Powder X-ray diffraction patterns of the HSMZU.DMF-P2.

Figure S15 : Hirshfeld surfaces of (d) HSMZU.DMF-P1, (e) HSMZU.DMF-P2, (f) TBA(SMZU)

Figure S16: ORTEP diagram of TBA(SMZU) drawn with 50% ellipsoid probability.

Figure S17: Powder X-ray diffraction patterns of the TBA(SMZU).

Figure S18: FT-IR spectrum (neat) of the TBA(SMZU).

Figure S19: ${ }^{1} \mathrm{H}$ 2D-HOMOCOSY (600 MHz , DMSO- d_{6}) spectrum of the TBA(SMZU).

Figure S20: ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 600 \mathrm{MHz}\right)$ spectra of the $\mathrm{TBA}(\mathbf{S M Z U})$. Figure $\mathbf{S 1 8}:{ }^{1} \mathrm{H}$ 2DHOMOCOSY (600 MHz, DMSO-d $_{6}$) spectrum of the TBA(SMZU).

Figure S21: ORTEP diagram of butyl-SMZU.TBAI drawn with 50% ellipsoid probability.

Figure S22: Powder X-ray diffraction patterns of the butyl-SMZU.TBAI

Figure S23: FT-IR spectrum (neat) of the butyl-SMZU.TBAI.

Figure S24: ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 600 \mathrm{MHz}\right)$ spectra of the butyl-SMZU.TBAI.

Figure S25: ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6}) spectra of the butyl-SMZU.TBAI.

Figure S26: ESI mass spectrum of the butyl-SMZU.

Figure S27: ORTEP diagram of HSTZU.DMF drawn with 50% ellipsoid probability.

Figure S28: Powder X-ray diffraction patterns of the HSTZU.DMF.

Figure S29: FT-IR spectrum (neat) of the HSTZU.DMF.

Figure S30: ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{\mathrm{d}}, 600 \mathrm{MHz}\right.$,) spectra of the HSTZ.DMF.

Figure S31: ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$) spectra of the HSTZ.DMF.

(a)

(b)

Figure S32: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$) titration showing the aromatic protons of HSTZU.DMF recorded by adding different amounts of tetrabutylammonium (a) chloride and (b) bromide.

Figure S33: ORTEP diagram of HSTZU.DMSO drawn with 50% ellipsoid probability.

Figure S34: Powder X-ray diffraction patterns of the HSTZU.DMSO.

Figure S35: FT-IR spectrum (neat) of the HSTZU.DMSO.

Figure S36: ${ }^{1} \mathrm{H}$ 2D-HOMOCOSY (600 MHz , DMSO- d_{6}) spectrum of the HSTZU .DMSO.

Figure S37: ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 600 \mathrm{MHz}\right.$,) spectra of the HSTZU.DMSO.

Figure S38: ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO-d d_{6}) spectra of the HSTZU.DMSO.

Figure S39: ORTEP diagram of HSTZU.TBAI with 50% ellipsoid probability.

Figure S40: Powder X-ray diffraction patterns of the HSTZU.TBAI.

Figure S41: ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{\mathrm{d}}, 600 \mathrm{MHz}\right)$ spectra of the HSTZU.TBAI.

Figure S42: ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6}) spectra of the HSTZU.TBAI.

Figure S43: FT-IR spectrum (neat) of the TBA(STZU).

Figure S44: ${ }^{1} \mathrm{H}$ 2D-HOMOCOSY ($600 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) spectrum of the TBA(STZU).

Figure $\mathbf{S 4 5}:{ }^{1} \mathrm{HNMR}\left(\right.$ DMSO- $_{6}, 600 \mathrm{MHz}$) spectra of the $\mathrm{TBA}(\mathbf{S T Z U})$.

Figure S46: ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6}) spectra of the TBA(STZU).

Figure S47: Thermogram of the polymorph (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2.

Figure S48: Differential scanning calorimetry of (a) HSTZU.DMF (b) HSTZU.DMSO (heating rate $10^{\circ} \mathrm{C} / \mathrm{min}$ under nitrogen atmosphere).

Figure S49: Hirshfeld surfaces of (a) HSTZU.DMF (b) HSTZU.DMSO, (c) HSTZU.TBAI.

Figure S50: Percentages of the $\mathrm{H}^{\cdots} \mathrm{C}, \mathrm{H}^{\cdots} \mathrm{H}, \mathrm{H} \cdots \mathrm{O}, \mathrm{H}^{\cdots} \mathrm{N}, \mathrm{H}^{\cdots} \mathrm{S}$ and H^{\cdots} anion interaction (include reciprocal contacts) in 2D fingerprint plots

Figure S51: 2D fingerprint plots (including reciprocal contacts) of the $\mathrm{H} \cdots \mathrm{C}, \mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O}$, $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{H} \cdots$ anion interactions of a) HSMZU.DMF-P1 b) HSMZU.DMF-P2 c) TBA(SMZU).

Figure S52: 2D fingerprint plots (including reciprocal contacts) of the $\mathrm{H}^{\cdots} \mathrm{C}, \mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O}$, $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{H} \cdots$ anion interactions of (a) HSTZU.DMF (b) HSTZU.DMSO (c) HSTZU.TBAI.

Figure S53: Changes in the UV-visible spectra of (a) HSTZU and (b) HSMZU ($3.3 \times 10^{-5} \mathrm{M}$, 2 mL in each case) in dimethylsulfoxide by aliquots ($30 \mu \mathrm{~L}$) of tetrabutylammonium fluoride $\left(10^{-2} \mathrm{M}\right)$.

Figure S54: Visual color change of a) HSMZU b) HSTZU after addition of TBAF and TBABr respectively.

(a)

(b)

Figure S55: HOMO and LUMO gap in the (a) HSMZU.DMF-P1 (b) HSMZU.DMF-P2 (c) TBA(SMZU), (d) HSTZU.DMF (e) HSMZU-P1 (f) HSMZU-P2 (g) dimer of HSMZU-P1 (h) dimer of HSMZU-P2 (i) dimer of TBA(SMZU) (j) dimer of HSTZU.DMF (k) HSMZU.DMSO calculated by DFT using B3LYP/6-31+G (d, p) as basis set.

[^0]: Title
 Synthesis and characterization of the hosts, solvates, cocrystals and salts
 Scheme S1: A plausible mechanism of the C-N bond formation from reaction of HSTZU
 with TBAI.
 Table S1:Hydrogen bond parameters of solvates, cocrystals and salt
 Table S2: Torsion angles of solvates, ionic cocrystals and salts of HSMZU
 Table S3: Torsion angles of solvates of HSTZU
 Figure S1: ORTEP diagram of HSMZU.DMF-P1 drawn with 50% ellipsoid probability.
 Figure S2: Powder X-ray diffraction patterns of the HSMZU.DMF-P1
 Figure S3: FT-IR spectrum (neat) of the HSMZU.DMF-P1
 Figure S4: ${ }^{1} \mathrm{HNMR}$ (DMSO- $\mathrm{d}_{6}, 600 \mathrm{MHz}$) spectra of the HSMZU.DMF-P1
 Figure S5: ${ }^{1} \mathrm{HNMR}$ (DMSO-d6, 600 MHz) spectra of the HSMZU
 Figure S6: ${ }^{1} \mathrm{H}-2 \mathrm{D}-\mathrm{HOMOCOSY}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}) spectrum of the HSMZU.DMF-P1
 Figure S7: ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6}) spectra of the HSMZU
 Figure S8: ${ }^{13} \mathrm{CNMR}$ (125 MHz, DMSO- $_{6}$) spectra of the HSMZU.DMF-P1
 Figure S9: ${ }^{1} \mathrm{HNMR}$ ($\mathrm{DMSO}_{\mathrm{d}}$, 600 MHz) spectra of the HSMZU.DMF-P1 at variable temperatures
 Figure S10: Variable temperature ${ }^{1}$ HNMR spectra (DMSO- $_{6}$, 600 MHz) of
 HSMZU.DMF-P1 with 10 equivalent of TBAI (* assignment of peaks)
 Figure S11: ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) titration of HSMZU.DMF-P1 by adding
 different amounts of tetrabutylammonium (a) chloride and (b) bromide (showing the aromatic protons of HSMZU.DMF-P1)
 Figure S12: ORTEP diagram of HSMZU.DMF-P2 drawn with 50% ellipsoid probability
 Figure S13: Powder X-ray diffraction patterns of the HSMZU.DMF-P2
 Figure S14: FT-IR spectrum (neat) of the HSMZU.DMF-P2
 Figure S15 : Hirshfeld surfaces of (d) HSMZU.DMF-P1, (e) HSMZU.DMF-P2, (f)
 TBA(SMZU).
 Figure S16: ORTEP diagram of TBA(SMZU) drawn with 50% ellipsoid probability
 Figure S17: Powder X-ray diffraction patterns of the TBA(SMZU)
 Figure S18: FT-IR spectrum (neat) of the TBA(SMZU)
 Figure S19: ${ }^{1} \mathrm{H} 2 \mathrm{D}-\mathrm{HOMOCOSY}\left(600 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right)$ spectrum of the TBA(SMZU)
 Figure S20: ${ }^{1} \mathrm{HNMR}$ (DMSO-d $\mathrm{d}_{6}, 600 \mathrm{MHz}$) spectra of the TBA(SMZU).
 Figure S21: ORTEP diagram of butyl-SMZU.TBAI drawn with 50% ellipsoid probability.
 Figure S22: Powder X-ray diffraction patterns of the butyl-SMZU.TBAI
 Figure S23: FT-IR spectrum (neat) of the butyl-SMZU.TBAI
 Figure S24: ${ }^{1} \mathrm{HNMR}$ ($\mathrm{DMSO}^{2} \mathrm{~d}_{6}, 600 \mathrm{MHz}$) spectra of the butyl-SMZU.TBAI
 Figure S25: ${ }^{13}$ CNMR (125 MHz , DMSO- d_{6}) spectra of the butyl-SMZU.TBAI.
 Figure S26: ESI mass spectrum of the butyl-SMZU.
 Figure S27: ORTEP diagram of HSTZU.DMF drawn with 50\% ellipsoid probability
 Figure S28: Powder X-ray diffraction patterns of the HSTZU.DMF
 Figure S29: FT-IR spectrum (neat) of the HSTZU.DMF
 Figure S30: ${ }^{1} \mathrm{HNMR}$ (DMSO- $\mathrm{d}_{6}, 600 \mathrm{MHz}$,) spectra of the HSTZ.DMF

