Electronic Supplementary Information

Supramolecular interaction of inositol phosphates with Cu(II): comparative study InsP₆-InsP₃

Delfina Quiñone, Nicolás Veiga, Matteo Savastano, Julia Torres, Antonio Bianchi, Carlos Kremer and Carla Bazzicalupi

Content

Table S1. Crystal data and refinement parameters for $1.14 H_2O$ and $2.10.5H_2O$	S2
Table S2. Bond distances and angles for metal coordination environments in 1·14H ₂ O	S3
Table S3. Bond distances and angles for metal coordination environments in 2·10.5H ₂ O	S3
Table S4. PDB Identifiers and respective chemical names	S4
Fig. S1. Species distribution diagram for phen:L ¹ :Cu(II).	S5
Fig. S2. Experimental IR spectra of complexes $1 \cdot 14H_2O$ and $[Cu_5(H_7L^1)_2(H_2O)_2(phen)_5] \cdot 23H_2O$.	S6
Fig. S3. Experimental and theoretical IR spectra of complex 2 .	S7
Fig. S4. Experimental IR spectra of compound 2 ·10.5H ₂ O, terpy and sodium salt of L ²	S8
Fig. S5. DFT-optimized geometry in gas phase of 2 .	S9
Fig. S6. Unique PDB structures containing Ins <i>P</i> isomers (1-6 phosphate groups)	S10
Fig. S7. Distribution of available literature material by number of phosphate substituents (1-	
6) on the inositol core	S11
Fig. S8. Experimental metal by metal binding chance as percent of coordinated vs structure	
containing both the metal and InsPs	S12
Fig. S9. Overlook on metal complexes features: ligand denticity, metal complex nuclearity,	
participations of metal-coordinated water molecules in H-bond with phosphate groups of	
the ligand	S13

	1 ·14 H₂O	2 ·10.5H₂O	
Empirical formula	$C_{66}H_{82}Cu_3N_{10}O_{39}P_6$	C ₃₆ H ₅₆ Cu ₂ N ₆ O _{26.5} P ₃	
Formula weight	2015.85	1216.85	
Temperature (K)	298	100	
space group	P21/c	P-1	
<i>a</i> (Å)	10.5277(4)	14.6359(5)	
<i>b</i> (Å)	30.222(1)	14.6677(5)	
<i>c</i> (Å)	26.182(1)	15.1995(8)	
α (°)	90	63.897(4)	
β (°)	100.361(4)	64.765(4)	
γ (°)	90	65.067(4)	
Volume (ų)	8194.3(6)	2538.2(2)	
Z	4	2	
Independent reflections / R(int)	22869 / 0.0540	8712 / 0.0752	
μ (mm ^{.,})	0.990 (Μο-Κα)	2.754 (Cu-Kα)	
R indices [I>2σ(I)]*	R1= 0.0844 wR2= 0.1999	R1= 0.0799 wR2= 0.2054	
R indices (all data)*	R1= 0.1188 wR2= 0.2205	R1= 0.1113 wR2= 0.2659	
CCDC no.	2129733	2129734	

Table S1. Crystal data and refinement parameters for $1.14 H_2O$ and $2.10.5H_2O$.

* R1 = Σ || Fo| - |Fc| | / Σ |Fo| ; wR2 = = [Σ w(Fo² - Fc²)² / Σ wFo⁴] $\frac{1}{2}$

Cu1 - N1	2.168(4)	Cu2 - N5	2.021(4)	Cu3 - N7	1.993(4)
Cu1 - N2	1.979(4)	Cu2 - N6	2.011(4)	Cu3 - N8	2.060(4)
Cu1 - N4	2.061(5)	Cu2 - 053	1.928(3)	Cu3 - N9	2.003(4)
Cu1 - N3	1.985(4)	Cu2 - O63	1.935(3)	Cu3 - N10	2.162(4)
Cu1 - 054	1.988(3)	Cu2 - OW1	2.328(4)	Cu3 - O43	1.958(3)
N1 - Cu1 - N2	80.5(2)	N5 - Cu2 - N6	81.4(2)	N7 - Cu3 - N8	81.9(2)
N1 - Cu1 - N4	118.0(2)	N5 - Cu2 - O53	167.8(2)	N7 - Cu3 - N9	174.0(2)
N1 - Cu1 - N3	94.0(2)	N5 - Cu2 - O63	90.9(2)	N7 - Cu3 - N10	99.2(2)
N1 - Cu1 - O54	101.8(2)	N5 - Cu2 - OW1	102.1(2)	N7 - Cu3 - O43	93.8(2)
N2 - Cu1 - N4	97.4(2)	N6 - Cu2 - O53	89.4(2)	N8 - Cu3 - N9	92.4(2)
N2 - Cu1 - N3	173.2(2)	N6 - Cu2 - O63	169.2(2)	N8 - Cu3 - N10	103.6(2)
N2 - Cu1 - O54	88.2(2)	N6 - Cu2 - OW1	93.1(2)	N8 - Cu3 - O43	155.1(2)
N4 - Cu1 - N3	81.7(2)	053 - Cu2 - 063	97.1(2)	N9 - Cu3 - N10	80.2(2)
N4 - Cu1 - O54	140.2(2)	O53 - Cu2 - OW1	86.3(1)	N9 - Cu3 - O43	92.2(2)
N3 - Cu1 - O54	96.7(2)	O63 - Cu2 - OW1	95.9(1)	N10 - Cu3 - O43	101.3(2)

Table S2. Bond distances (Å) and angles (deg) for metal coordination environments in 1.14 $\rm H_2O.$

Table S3. Bond distances (Å) and angles (deg) for metal coordination environments in $2{\cdot}10.5H_2O.$

Cu1 - N1	2.044(5)	Cu2 - N4	2.034(5)
Cu1 - N2	1.964(8)	Cu2 - N5	1.938(7)
Cu1 - N3	2.052(5)	Cu2 - N6	2.028(6)
Cu1 - O24	1.926(5)	Cu2 - OW1	1.944(7)
Cu1 - O34	2.184(5)	Cu2 - O14	2.145(5)
O24 - Cu1 - O34	98.8(2)	O14 - Cu2 - N4	99.4(2)
O24 - Cu1 - N1	95.5(2)	O14 - Cu2 - N5	92.7(2)
O24 - Cu1 - N2	162.0(2)	O14 - Cu2 - N6	92.6(2)
O24 - Cu1 - N3	103.4(2)	O14 - Cu2 - OW1	101.4(2)
O34 - Cu1 - N1	89.7(2)	N4 - Cu2 - N5	81.0(2)
O34 - Cu1 - N2	98.2(2)	N4 - Cu2 - N6	157.4(3)
O34 - Cu1 - N3	98.6(2)	N4 - Cu2 - OW1	99.3(2)
N1 - Cu1 - N2	79.1(3)	N5 - Cu2 - N6	79.3(3)
N1 - Cu1 - N3	157.8(2)	N5 - Cu2 - OW1	165.6(3)
N2 - Cu1 - N3	79.3(2)	N6 - Cu2 - OW1	97.0(3)

 Table S4. PDB Identifiers and respective chemical names.

Identifier	Name
Monophosphates	
I4D	D-myo-Inositol-4-Phosphate
IPD	D-myo-Inositol-1-Phosphate
LIP	L-myo-Inositol-1-Phosphate
Bisphosphates	
2IP	D-myo-Inositol-1,4-Bisphosphate
IP2	D-myo-Inositol-4,5-Bisphosphate
ITP	Inositol 1,3-Bisphosphate
Trisphosphates	
FGV	D-myo-Inositol-1,3,5-Trisphosphate
I2P	D-myo-Inositol-2,4,5-Trisphosphate
13P	D-myo-Inositol-1,4,5-Trisphosphate
I3S	(1S,3S,4S)-1,3,4-Triphospho-Myo-Inositol
Tetrakisphosphates	
4IP	Inositol-(1,3,4,5)-Tetrakisphosphate
4MY	myo-Inositol 3,4,5,6 Tetrakisphosphate
IOP	D-myo-Inositol 1,4,5,6 Tetrakisphosphate
14P	(1S,3R,4R,6S)-1,3,4,6-Tetrapkisphosphate
Pentakisphosphates	
5IP	D-myo-Inositol(1,2,3,5,6)-Pentakisphosphate
5MY	myo-Inositol-(1,3,4,5,6)-Pentakisphosphate
15P	Inositol-(1,3,4,5,6)-Pentakisphosphate
IP5	D-myo-Inositol-(1,2,3,4,5)-Pentakisphosphate
K7V	Neo-Inositol Pentakisphosphate
Hexakisphosphates	
IHP	Inositol Hexakisphosphate
KGN	D-Chiro Inositol Hexakisphosphate

Fig. S1. Species distribution diagram for phen:L¹:Cu(II) system (in terms of phen percentage), in 0.15 M Me₄NCl at 37.0 °C from thermodynamic studies reported in [29]. Concentration of reactants follows those of the synthesis, [phen] = [Cu(II)] = 5 mM, [L¹] = 0.8 mM. The vertical dashed line represents the pH of synthesis.

Fig. S2. Experimental IR spectra of complexes $1 \cdot 14H_2O$ and $[Cu_5(H_7L^1)_2(H_2O)_2(phen)_5] \cdot 23H_2O$ [29]. Grey zones highlight the slight differences between both spectra.

Fig. S3. Experimental (black) and theoretical (red) IR spectra of complex 2.

Fig. S4. Experimental IR spectra of compound $2 \cdot 10.5 H_2 O$ (red) and the ligands terpy (black) and sodium salt of L² (blue).

Fig. S5. DFT-optimized geometry in gas phase of **2**. Atom colour code: C (grey), O (red), N (blue), P (orange), Cu (pink). The corresponding crystal structure is shown superimposed in green. Non-polar hydrogen atoms are omitted for clarity.

Fig. S6. Unique PDB structures containing inositol-phosphates (1-6 phosphate groups). Gaps separate isomers with different number of phosphate groups. Nomenclature follows PDB standard (cf. Table S4).

Fig. S7. Distribution of available literature material by number of phosphate substituents (1-6) on the inositol core.

Metal Binding Overview Chart

Fig. S8. Experimental metal by metal binding chance as percent of coordinated vs structure containing both the metal ion and Ins*P*s. Metal ions are sorted by charge, then by atomic number. Figures on the right are the number of PDB structures containing Ins*P*s and the specified metal cation.

Fig. S9. Overlook on metal complexes features: ligand denticity, metal complex nuclearity (as number of metal cations directly bound to each Ins*P*), participations of metal-coordinated water molecules in H-bond with phosphate groups of the ligand.