Tracing Absorption and Emission Characteristics of Halogen-bonded Ion Pairs Involving Halogenated Imidazolium Species

Supporting Information

Sarah Karbalaei Khani,[†] Bastian Geissler,[‡] Elric Engelage,[¶] Patrick Nuernberger,^{*,‡} and Christof Hättig^{*,†}

†Arbeitsgruppe Quantenchemie, Ruhr-Universität, Bochum 44780, Germany ‡Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany

¶Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany

E-mail: patrick.nuernberger@ur.de; christof.haettig@rub.de

Table S1: 2-Iodo-imidazolium · OTf: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in vacuum at the ADC(2)/def2-TZVPP level.

Table S2: 2-Iodo-imidazolium cation: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

State	ω	f	occ	vir
1	5.06	0.000		
2	5.59	0.388		1
3	5.83	0.001	× S	
4	6.72	0.000	× Z	
5	6.95	0.000		, Mar

Table S3: 2-Iodo-imidazolium cation: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the S₁ equilibrium structure (S₁-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

Table S4: 2-Iodo-benzimidazolium · OTf: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in vacuum at the ADC(2)/def2-TZVPP level.

State	ω	f	occ	vir
1	4.55	0.411	• • •• <u>•</u> •••••••••••••••••••••••••••••••	to a state of the
2	4.67	0.073	xx 8	to a set of the set
3	5.15	0.000		t appet
4	5.33	0.024		Free *
5	5.44	0.061		×

Table S5: 2-Iodo-benzimidazolium cation: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

Table S6: 2-Iodo-benzimidazolium cation: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the S₁ equilibrium structure (S₁-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

State	ω	occ	vir
1	2.58		. The second second
2	2.86	A Contraction	. THE
3	3.17		
4	3.39		
5	5.05		

Table S7: 2-Bromo-benzimidazolium · OTf: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

Table S8: 2-Bromo-benzimidazolium \cdot OTf: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the S₁ equilibrium structure (S₁-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

Table S9: 2-Bromo-benzimidazolium cation: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

Table S10: 2-Bromo-benzimidazolium cation: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the S₁ equilibrium structure (S₁-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

State	ω	f	Occ	Vir
1	2.55	0.036		N
2	3.05	0.298		Net
3	4.08	0.002		
4	4.24	0.065		
5	5.43	0.021		Sold Sold Sold Sold Sold Sold Sold Sold

Table S11: Bis(2-Iodo-benzimidazolium) \cdot Cl: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in vacuum at the ADC(2)/def2-TZVPP level.

State	ω	f	occ	vir
1	4.30	0.189		
2	4.31	0.197		
3	4.45	0.012		A
4	4.48	0.024	A CONTRACT	
5	4.54	0.003		

Table S12: Bis(2-Iodo-benzimidazolium) dication: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the ground state equilibrium structure (S₀-eq) in acetonirile solution at the COSMO-ADC(2)/def2-TZVPP(post-SCF) level.

Table S13: Bis(2-Iodo-benzimidazolium) dication: Vertical excitation energies (ω), oscillator strengths (f) and NTOs for the S₁ equilibrium structure (S₁-eq) in acetonitrile solution at the COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) level.

State	ω	f	occ	vir
1	2.30	0.061		र्द्रक्
2	2.83	0.115		र्रुक्
3	3.25	0.012	A A A	A A A A A A A A A A A A A A A A A A A
4	3.62	0.087		文中交
5	3.73	0.028		

Figure S1: Normalized transient fluorescence decays at 330 nm (**a**), 350 nm (**b**), and 400 nm (**c**) for the five BzIm⁺ compounds in acetonitrile solution (390μ M) after 266 nm excitation.

Figure S2: Impact study of the counterion $[BAr_4^F]^-$, time-resolved fluorescence streak images of $IBzImBAr_4^F$ (**a**) and $NaBAr_4^F$ (**b**) in acetonitrile solution (390 μ M) excited at 266 nm.

Table S14: 2-Bromo-1,3-dimethylbenzimidazolium and 2-Bromo-1,3-dimethylbenzimidazolium \cdot MeCN: Ground state and S₁ equilibrium structures in acetonitrile solution obtained with COSMO-RI-MP2/def2-TZVPP(post-SCF) for ground states and COSMO-RI-ADC(2)/def2-TZVPP(post-SCF) for excited states.

Table S15: 2-Bromo-1,3-dimethylbenzimidazolium and 2-Bromo-1,3-dimethylbenzimidazolium \cdot MeCN: Ground state and S₁ energies (in eV) relative to ground state energy at the S₀ and S₀(A) structure for, respectively 2-Bromo-imadazolium and the complexes with one explicit MeCN molecule. All results obtained with COSMO-RI-MP2/def2-TZVPP (S₀) and COSMO-RI-ADC(2)/def2-TZVPP (S₁).

structure	S_0	S_1	ΔE
S_0	0.00	4.79	4.79
S_1	1.54	3.82	2.28
$S_0(A)$	0.00	4.78	4.78
$S_1(A)$	1.56	3.85	2.29
$S_0(B)$	0.18	4.96	4.79
$S_1(B)$	1.52	3.83	2.31