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1 Syntheses of nitroxides H-mNOPEG and D-mNOPEG
1.1 Scheme of the synthesis of iodide R!-PEPg;-I 2
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Figure Sa1 Assembly of iodide R!-PEPR1-l 2.

1.2 Nomenclature

To denominate the compounds in the experimental part we use the following nomenclature: The 1,4-phenylene and
ethynylene units are abbreviated with P and E, respectively. These letters are only used to describe the stiff, linear
unit of the compounds. They have a different meaning in the established abbreviations PEG and TIPS. R!, R? and R?
denominate the substituents at benzene rings. These substituents are shown in Fig. 2 of the main manuscript. Pgr;
stands for a benzene ring with two substituents of type R! in 2- and 6-position. NO* denominates the nitroxide moiety
including the atoms linking the nitroxide moiety to the benzene ring.

1.3 Experimental part
1.3.1 General

Unless otherwise stated, reactions were performed under argon and in case of the syntheses of alkyne H-EP-NO* 3
and nitroxide D-mNOPEG D-1 in dried glassware, using the Schlenk technique. The argon (4.6 technical grade) was
passed through anhydrous CacCl, prior to its use. Solutions were degassed through several freeze-pump-thaw cycles.

For reactions, commercially available solvents and reagents were used as obtained: 4-ethynylaniline, > 98%, ob-
tained from TCI; 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl, > 99%, obtained from Alfa Aesar; anhydrous
THF, CH,Cl,, and toluene over molecular sieve was obtained from Acros. The solvents used for extraction and chro-
matography were of technical grade and were distilled prior to their use. PdCl,(PPh;), was synthesized according to
literature, ! however using 2.1 times the given amount of methanol. Perdeuterated 3-carbamoyl-2,2,5,5-tetramethyl-3-
pyrrolin-1-oxyl was provided by H. Zimmermann. The starting compounds (3-bromoprop-1-yn-1-yl)triisopropylsilane
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(13), diiodobenzene 14 (I-Pg;-I, R1 = OCH,CCTIPS), and PEG-N; 6 were obtained as described elsewhere.2 As re-
ported,? (3-bromoprop-1-yn-1-yl)triisopropylsilane was obtained in mixture with hept-1-ynyltriisopropylsilane. The
latter is of no concern in the use of (3-bromoprop-1-yn-1-yl)triisopropylsilane (13) described herein.

Temperatures reported for the reactions refer to the bath temperatures. Solvents were removed at a bath temperature
of ca. 40 °C and reduced pressure. The products were dried at room temperature at ca. 0.05 mbar. The ratio of the
components in a mixture was determined by 'H NMR spectroscopy and is given in a molar ratio.

Column chromatography was carried out on silica gel 60 M (Macherey Nagel) applying slight pressure. The size of
the silica gel column is given as diameter x length. The material was loaded onto the column dissolved in a small
quantity of the eluent, if no other information is given. Thin layer chromatography (TLC) was performed on silica
gel coated aluminum foil (Merck, 60 F254). The spots were detected with UV light of A = 254 and 366 nm. The
compositions of solvent mixtures are given in volume ratios. '"H NMR and !3C NMR spectra were calibrated using the
solvent signal as an internal standard [CDCl,: §("H) = 7.25, §('3C{'H}) = 77.00; CD,Cl,: §("H) = 5.32, §('3C{'H})
= 53.80]. Signal assignments are supported by DEPT-135, HMBC and HMQC spectra. ESI mass spectra were recorded
using an Esquire 3000 ion trap mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany) equipped with a nano-
ESI source. ESI accurate mass measurements were acquired using an Agilent 6220 time-of-flight mass spectrometer
(Agilent Technologies, Santa Clara, CA, USA) in extended dynamic range mode equipped with a Dual-ESI source or
using a Q-IMS-TOF mass spectrometer Synapt G2Si (Waters GmbH, Manchester, UK) in resolution mode interfaced to
a nano-ESI ion source.

1.3.2 Syntheses of building blocks H-11, D-11, and 3

Perdeuterated 2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl-3-carboxylic acid (D-11). We used experimental procedures
of Oyaizu et al.® and Kirilyuk et al.# as guidelines. HPLC was used to proof the purity. Perdeuterated 3-carbamoyl-
2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl (53.4 mg, 0.272 mmol) was suspended in aqueous NaOH solution (10 wt%; 800
uL, 22.2 mmol) and the suspension was stirred at 120 °C for 3 h at ambient atmosphere. The yellow solution was
diluted with water and washed with Et,0. The organic phase was discarded. The pH of the aqueous phase was
brought to 2 through addition of an aqueous solution of NaHSO, (10 wt%, 3 mL). Then Et,O was added. The phases
were separated, and the aqueous phase was extracted with Et,0. The organic phases which had been obtained during
extraction of the acidic aqueous phase with Et,0, were combined, washed with water, dried over MgSO, * x H,O, and
filtered. The solvents were removed from the filtrate providing perdeuterated 2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl-3-
carboxylic acid (D-11) (43.7 mg, 81%) as a pale yellow solid. Analytical HPLC: retention time 4.4 min (HPLC-column:
Luna® Silica (2) Phenomenex, particle size 5 um, pore size 100 f\, length 250 mm, internal diameter 4.6 mm; elution:
room temperature, flow rate 1.0 mL/min, linear gradient: CH,Cl,/EtOH: 0-10 min 10% EtOH, 10-20 min 10%—20%,
20-30 min 20%—40%; detection: UV at 210 nm).

2,2,5,5-Tetramethyl-3-pyrrolin-1-oxyl-3-carboxylic acid (H-11). Spin label H-11 was synthesized in the same
way as the perdeuterated spin label D-11 starting from 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl. Analyt-
ical HPLC: retention time 4.6 min (HPLC-column: Luna® Silica (2) Phenomenex, particle size 5 um, pore size
100 A, length 250 mm, internal diameter 4.6 mm; elution: room temperature, flow rate 1.0 mL/min, linear gra-
dient: CH,Cl,/EtOH: 0-10 min 10% EtOH, 10-20 min 10%—20%, 20-30 min 20%—40%; detection: UV at 210
nm). For comparison the starting compound 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl was eluted at 7.7 min.
Comment on the analysis of spin label H-11: We tested the option of compound identification through 'H NMR spec-
troscopy after addition of a mild reducing agent for converting the nitroxide radical into a hydroxylamine. Experiments
with SnCl, in aqueous acetone revealed an extremely slow reaction, being incomplete even after 21 h at room tem-
perature. 1,2,3,4,5-Pentafluorophenylhydrazine in in chloroform provided a mixture of products. Na,S,0, in aqueous
acetone worked best, however the reaction needed a little more than 50 min at room temperature (no further more
detailed experiments were performed) and at a much longer reaction time of 21 h a side reaction became obvious.

H-EP-NO* 3. We applied a procedure described for structurally closely related compounds.>® 2,2,5,5-Tetramethyl-3-
pyrrolin-1-oxyl-3-carboxylic acid (H-11) (144 mg, 0.782 mmol) and DMAP (220 mg, 1.80 mmol) were dissolved in
anhydrous CH,Cl, (5 mL) and the yellow solution was cooled with an icebath. SOCl, (55.0 uL, 0.758 mmol) was
added, whereupon the solution immediately changed its color from yellow to orange-red. After stirring the solution
at room temperature for 45 min, a solution of 4-ethynylaniline (46 mg, 0.393 mmol) in anhydrous CH,Cl, (2 mL)
was added and the orange solution was stirred at room temperature for 50 min. Then it was filtered through silica gel
(2 cm x 3 cm, rinsing with CH,Cl,/Et,0 25:1). The solvent was removed from the eluate. Column chromatography
(1.5 cm x 25 cm, CH,Cl,/Et,0 25:1; compound was loaded onto the silica gel column as a solution in CDCl;) of the
residual orange oil gave H-EP-NO* 3 (110 mg, 99%; R¢ = 0.11) as a yellow solid. 'H NMR (500 MHz, CD,Cl,): §
7.54 (broad and featureless "s" with shoulder, 4 H, Ha,), 3.10 (s, 1 H, C=CH). '3C NMR (126 MHz, CD,Cl,): § 132.4
(CarH meta to N), 121.0 (CaH ortho to N), 118.1 (C,,C=C), 82.5 (C=CH), 77.1 (C=CH).

1.3.3 Synthesis of iodide 2

(3-(4-Iodophenoxy)prop-1-yn-1-yl)triisopropylsilane (R!-P-I, 14) K,CO, (980 mg, 7.09 mmol) was suspended in a
solution of 4-iodophenol (759 mg, 3.45 mmol) and a mixture (969 mg) of (3-bromoprop-1-yn-1-yl)triisopropylsilane
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(13; 3.13 mmol) and hept-1-ynyltriisopropylsilane (0.42 mmol) in butanone (100 mL). The suspension was stirred
at 95 °C for 43 h. After the brown-orange suspension had cooled down to room temperature, it was filtered through
silica gel (4.5 cm X 4 cm, rinsing with Et,O (100 mL)). The solvent was removed from the eluate. Column chro-
matography (3 cm x 28 c¢m, ca. 600 mL pentane, then pentane/Et,0 30:1) of the brown liquid residue gave R'-P-I
14 (613 mg, 47%; R¢ = 0.50) as a colorless liquid. A later eluted fraction (388 mg of yellow liquid) contained also
R!-P1 14. This latter fraction was submitted to column chromatography with pentane/Et,O 50:1 and a subsequent
column chromatography with pentane/CH,Cl, 50:1. Only with the last column chromatography the unidentified by-
component was removed and additional R'-P-I 14 (165 mg, 12%) was obtained as a colorless liquid. For 'H and '3C
NMR data, see Tables Sal and Sa2. Accurate MS (EI): m/z caled for [M]T C;gH,,10Si*, 414.08704; found, 414.08688.

Triisopropyl(3-(4-((trimethylsilyl)ethynyl) phenoxy)prop-1-yn-1-yl)silane (R!-PE-TMS, 15). To a degassed solu-
tion of R!-P-I 14 (730 mg, 1.76 mmol) and trimethylsilylethyne (370 uL, 2.67 mmol) in THF (25 mL) and piperidine
(5 mL, 51 mmol) were added PdCl,(PPh;), (25 mg, 0.036 mmol) and Cul (13 mg, 0.068 mmol). After stirring the
reaction mixture at room temperature for 21 h, Et,O and then water were added. The phases were separated, and the
aqueous phase was extracted with Et,0. The combined organic phases were washed with 2 N HCI and brine, dried
over MgSO, ¢ x H,O, and filtered. The solvents of the filtrate were removed. Column chromatography (2.5 cm x 28
cm, pentane/Et,0 50:1) gave R!-PE-TMS 15 (671 mg, 99%; R; = 0.33) as a yellow oil. For 'H and '*C NMR data, see
Tables Sal and Sa2. Accurate MS (EI): m/z caled for [M]+ C,3H;0Siy*, 384.22992; found, 384.22861.

(3-(4-Ethynylphenoxy)prop-1-yn-1-yl)triisopropylsilane (R!-PE-H, 16). K,CO, (33 mg, 0.24 mmol) was added to
a solution of R!-PE-TMS 15 (60 mg, 0.156 mmol) in CH,Cl, (7.0 mL) and methanol (7.0 mL). The suspension was
stirred at room temperature for 5 h. Filtration through silica gel (2 cm x 5 cm, rinsing with Et,O (12 mL)) gave
R'-PE-H 16 in mixture with a trace of TMS-OH/-F as a colorless film (51 mg) in the flask. This material was used as
obtained. For 'H NMR data, see Table Sal.

R!-PEPR!-I 2 (iodide 2). To a degassed solution of diiodobenzene I-Pr;-I 17 (167 mg, 0.222 mmol) and the material
that had been obtained through TMS removal from R!-PE-TMS 15 (44 mg, containing max. 0.133 mmol R'-PE-H 16)
in THF (5 mL) and piperidine (1 mL, 10.1 mmol) were added PdCL, (PPh;), (2.4 mg, 3.4 umol) and Cul (1.2 mg, 6.3
umol). After stirring the yellow solution, which turned into a suspension over time, at room temperature for 20 h,
all volatiles were removed at room temperature and reduced pressure. The residue was taken up in Et,O and filtered
through silica gel (2 cm x 2 cm, rinsing with Et,O (10 mL)). Removal of the solvent from the eluate gave an orange-
brown oil. Column chromatography (2 cm x 33 cm, pentane/CH,Cl, 10:4) of this oil gave diiodobenzene I-Pr;-I 17
(85 mg, 51%; Ry = 0.57) as a slightly yellowish solid, a yellow-orange oil (63 mg; R = 0.40) consisting mainly of
R!-PEPg;-I 2, and the dicoupling product R'-PEPg;EP-R' (11 mg, 4% referring to diiodobenzene I-Pg;-I 17; R¢ = 0.20)
as a yellow film in the flask. Column chromatography (2 cm x 30 cm, pentane/CH,Cl, 10:3) of the yellow-orange oil
gave R'-PEPR;-I 2 (53 mg, 42% referring to R'-PE-H 16; R; = 0.22) as a colorless oil. Analytical data of R!-PEPg;-I 2:
for 'H and '3C NMR data, see Tables Sal and Sa2. Accurate MS (ESD): m/z caled for [M + Na]* CgoH,505Si3INa*,
957.39609; found, 957.3951. Analytical data of dicoupling product R'-PEPg;EP-R!: for 'H and '*C NMR data, see
Tables Sal and Sa2. Accurate MS (ESI): m/z caled for [M + Na]™ C7OH10204Si4Na+, 1141.67474; found, 1141.6727.

1.3.4 Protonated nitroxide H-mNOPEG (H-1)

R!-PEPR;EP-NO* 4. To a degassed solution of R!-PEPg;-I 2 (75 mg, 0.080 mmol) and H-EP-NO* 3 (24.5 mg, 0.086
mmol) in THF (3 mL) and piperidine (0.5 mL, 5.0 mmol) were added PdCl, (PPh;), (2.3 mg, 3.3 pmol) and Cul (1.3
mg, 6.8 umol). After stirring the reaction mixture for 18 h at room temperature, all volatiles were removed from the
suspension at room temperature and reduced pressure. The residue was taken up in Et,O and filtered through silica
gel (2 cm x 4 cm, rinsing with Et,O (10 mL)). The solvent was removed from the eluate. Column chromatography (2
cm x 32 ¢cm, CH,Cl,/Et,0 25:1) gave R'-PEPR; EP-NO* 4 (52 mg, 59%; R = 0.34) as a yellow film. For 'H and '3C
NMR data, see Tables Sal and Sa2. Accurate MS (ESI) obtained from a subsequently eluted chromatographic fraction
which shows the same thin layer chromatogram and 'H NMR spectrum as the earlier eluted fraction: m/z calcd for [M
+ Nal™ Cq,Hg3N,05Si;Nat, 1112.62845; found, 1112.6282.

R2-PEPg2EP-NO* 5. R!-PEPR;EP-NO* 4 (52 mg, 0.048 mmol) was dissolved in THF (5 mL) and n—-Bu,NF (1 M
in THF; 172 uL, 0.172 mmol) was added whereupon the reaction solution immediately changed its color from pale
yellow to yellow-brown. The solution was stirred at room temperature for 10 min. The solution was filtered through
silica gel (2 cm X 4 cm, rinsing with THF (12 mL)). Removal of the solvent from the eluate gave a beige solid (32 mg)
consisting of R2-PEPr,EP-NO* 5, TIPS-OH/-F, BuyNX (X = F, OH), and THF. This material was used as obtained. For
'H NMR data of R?>-PEPR,EP-NO* 5, see Table Sa3.

H-mNOPEG (R3-PEPg3EP-NO*, H-1). To a degassed suspension of PEG-N; 6 (72.6 mg, 0.171 mmol) and the ma-
terial that had been obtained through desilylation of R!-PEPg;EP-NO* 4 (32 mg, containing max. 0.048 mmol of
R2-PEPR,EP-NO* 5) in anhydrous toluene (8 mL) was added [Cu(phen) (PPh,),INO4+0.5 CH,Cl, (2.897 mg, 3.5
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umol). The reaction mixture was stirred for 43 h at 40 °C. The yellow-brown solution was exposed to air for 2 h at
room temperature for oxidation of possibly formed® hydroxylamine. Then, the flask was filled with argon and metal
scavenger QuadraPure TU (70 mg) was added. The suspension was stirred for 20 h at room temperature. Metal
scavenger QuadraPure BzA (5 mg) was added, and the suspension was stirred for another 2 h at room temperature.
The suspension was filtered through silica gel (2 cm x 3 cm, rinsing with CH,Cl,/EtOH 5:1 (10 mL)). The solvent
was removed from the eluate. Preparative HPLC (HPLC-column: Luna® Silica (2) Phenomenex, particle size 5 um,
pore size 100 A, length 250 mm, internal diameter 21.2 mm; elution: room temperature, flow rate 15 mL/min, linear
gradient: CH,Cl,/EtOH: 0-10 min 5% EtOH, 10-20 min 5%—10%, 20-30 min 10%—20%, 30-40 min 20%; detection:
UV at 220 nm; the eluate between 15.1 min and 20.1 min was collected) gave R3-PEPR3EP-NO* (H-mNOPEG, H-1)
(65 mg, 71% referring to R!-PEPR; EP-NO* 4) as a yellow film. For 'H and '*C NMR data, see Tables ZSa3a,b. Accurate
MS (ESD): m/z caled for [M + 2H]?* CoyH;44N;;Og9H,,™, 946.51385; found, 946.51140.

1.3.5 Perdeuterated nitroxide D-mNOPEG (D-1)

R!-PEPg;EP-NH, 8. To a degassed solution of R!-PEPg;-1 2 (59.8 mg, contaminated with silicon grease and unidenti-
fied compounds; for 'H NMR spectrum see Supporting Information Part B; containing max. 0.057 mmol of R'-PEPR!-I
2) and 4-ethynylaniline (7) (7.4 mg, 0.063 mmol) in THF (2 mL) and piperidine (0.5 mL, 5.0 mmol) were added
PdCl, (PPh;), (1.326 mg, 1.9 umol) and Cul (0.761 mg, 4.0 umol). After stirring the reaction mixture for 24 h
at room temperature, all volatiles were removed from the suspension at room temperature and reduced pressure.
Column chromatography (2 cm x 37 cm, pentane/CH,Cl, 1:2) gave R!-PEPg;EP-NH, 8 (23 mg, 43%; R; = 0.47)
as a yellow film. For 'H and '*C NMR data, see Tables Sal and Sa2. Accurate MS (ESI): m/z caled for [M + H]™
CsgHgNO;SisHY, 924.55970; found, 924.5583.

RZ-PEPRzEP-NH2 9. Rl-PEPmEP-NH2 8 (22 mg, 0.024 mmol) was dissolved in THF (3 mL) and n—Bu,NF (1 M in
THF; 85.7 uL, 0.086 mmol) was added whereupon the reaction solution changed its color immediately from yellow
to orange-brown. The solution was stirred at room temperature for 10 min. It was filtered through silica gel (2 cm x
3 cm, rinsing with THF (7 mL)). Removal of the solvent from the eluate gave a yellow solid (13.6 mg) consisting of
R2-PEPgoEP-NH, 9 and TIPS-OH/-F. This material was used as obtained. Analytical data of R2-PEPr,EP-NH, 9: for 'H
NMR data, see Table Sa3.

R3-PEPR3EP-NH, 10. To a degassed suspension of PEG-N; 6 (36.6 mg, 0.086 mmol) and the material that had been
obtained through desilylation of R!-PEPg;EP-NH, 8 (13.6 mg, containing max. 0.024 mmol R2-PEPR,EP-NH, 9) in
anhydrous toluene (4 mL) was added [Cu(phen)(PPh;),INO;*0.5 CH,Cl, (1.335 mg, 1.6 umol). The reaction mix-
ture was stirred for 67 h at 40 °C. Metal scavenger QuadraPure TU (54 mg) was added at room temperature. The
suspension was stirred for 25 h and filtered through silica gel (2 cm x 2 cm, rinsing with CH,Cl,/EtOH 5:1 (12 mL)).
The solvent was removed from the eluate. Preparative HPLC (HPLC-column: Luna® Silica (2) Phenomenex, particle
size 5 um, pore size 100 A, length 250 mm, internal diameter 21.2 mm; elution: room temperature, flow rate 15
ml/min, linear gradient: CH,Cl,/EtOH: 0-10 min 5% EtOH, 10-20 min 5%—10%, 20-30 min 10%—20%, 30-40 min
20%; detection: UV at 220 nm; the eluate between 24.5 min and 27.2 min was collected) gave R3-PEPR3EP-NH2 10
(28.5 mg, 69% refering to R!-PEPR;EP-NH, 8) as a yellow oil. For 'H and '*C NMR data, see Tables Sa4 and Sa5.
Accurate MS (ESD): m/z caled for [M + 2Na]?* CggHy3,N;005,Nay, ™, 885.45239; found, 885.4514.

D-mNOPEG (R3-PEPg3EP-NO*perdeuterated, D-1). We applied a procedure described for structurally closely related
compounds,>® however using a very large excess of spin label D-11 to cope with the challenge of handling tiny
amounts of SOCL, and of the highly water sensitive intermediate D-12. Perdeuterated 2,2,5,5-tetramethyl-3-pyrrolin-
1-oxyl-3-carboxylic acid (D-11) (55.6 mg, 0.282 mmol) and DMAP (78 mg, 0.638 mmol) were dissolved in anhydrous
CH,Cl, (2 mL) and the solution was cooled with an icebath. SOCI, (20.4 uL, 0.281 mmol) was added whereupon
the solution immediately changed its color from yellow to red-orange. After stirring the reaction mixture at room
temperature for 52 min, a solution of R3-PEPR3EP-NH2 10 (15.4 mg, 8.9 umol) in anhydrous CH,Cl, (0.8 mL) was
added and the reaction mixture was stirred at room temperature for another 2.5 h. Aqueous basic workup as outlined
in Fig. Sa2 gave spin label D-11 (45.6 mg, 82%; identification via analytical HPLC through comparison with an
authentic sample) as a pale yellow solid, and R3-PEPp3EP-NO ¢ perdeuterated (D-mNOPEG, D-1) contaminated with
DMAP as a yellow solid (79 mg). Preparative HPLC (HPLC-column: Luna® Silica (2) Phenomenex, particle size 5 um,
pore size 100 A, length 250 mm, internal diameter 21.2 mm; elution: room temperature, flow rate 15 mL/min, linear
gradient: CH,Cl,/EtOH: 0-10 min 5% EtOH, 10-20 min 5%—10%, 20-30 min 10%—20%, 30-40 min 20%; detection:
UV at 220 nm; the eluate between 23.9 min and 25.3 min was collected) of the product containing material gave
D-mNOPEG (D-1) (9.5 mg, 56%) as a yellow solid. For 'H NMR data, see Table Sa4. Accurate MS (ESI): m/z calcd
for [M + 2Na]?* Cg4H;5;D13N7;0,59Na,, ", 975.03659; found, 975.0353. Analytical HPLC: retention time 31.1 min
(HPLC-column: Luna® Silica (2) Phenomenex, particle size 5 m, pore size 100 A, length 250 mm, internal diameter
4.6 mm; elution: room temperature, flow rate 1.0 mL/min, linear gradient: CH,Cl,/EtOH: 0-10 min 5% EtOH, 10-20
min 5%—10%, 20-30 min 10%—20%, 30-40 min 20%; detection: UV at 220 nm).
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2 Characterization of H-mNOPEG aggregates by 4-pulse DEER

Concentration-dependent 4-pulse DEER measurements characterize the aggregate formation of H-mNOPEG as shown
in Fig. 2(b), main text. Fig. Sa3 displays the dipolar signal of the 80 uM sample along with the data analysis performed
with the open-source MATLAB toolbox DeerLab” (DL, version 0.9.2.), using the single-pathway 4-pulse DEER experi-
ment model (ex_4pdeer) combined with a stretched exponential background model (bg_strexp, B(t) = exp (—Ax|t|?)).
The parameter-free distance distributions P(r) was computed via Tikhonov regularization, while generalized cross-
validation (GCV) selected the optimal regularization parameter. All fitting parameters (the modulation depth A,
the decay rate k and the stretch factor d) were validated with bootstrapping in the following parameter ranges:
A=0.2-0.3,k=0.005-0.5us~¢, d = 0.9 —1.2. 500 bootstrapping samples correspond to converged 95% confidence
intervals, and the resulting upper and lower bounds in the time- and distance-domain are displayed in Fig. Sa3 (a)
and (b), respectively. The obtained distance distribution features peaks at multiple distances with the largest contri-
bution at 3.6 nm. We cannot state with certainty how many H-mNOPEG molecules form these aggregates or whether
different aggregate sizes or arrangements contribute to the dipolar signal and multi-spin effects introduce uncertainty
in the distance distribution.®

1 = y y =
(a) - 4ADEER data (b)
0.95¢ —DL: model-free, ex_4pdeer ||
—DL: background, bg_strexp 11
0.9+ 1 -
£0.85 £
> =
08! a 0.5
0.75 . i
| | R '“-T‘ ’.‘vl;, g O \ L L
0 1 2 2 3 4 5
tyo [Hs] r[nm]

Figure Sa3 (a) 4-pulse DEER measurement V(¢) of 80 uM H-mNOPEG in H,O:glycerol at 60 K (black dots). Time-domain
parameter-free fit (dark blue) along with the stretched exponential background model (dark orange) with

A =0.268,k =0.0195 us—¢,d = 1.2. The lighter colors indicate the 95% confidence interval associated with the following 95%
confidence intervals: A = 0.262 —0.274, k = 0.015—0.029 us~¢, d = 0.9 — 1.2. (b) Parameter-free distance distribution P(r) (dark
blue) with 95% confidence interval (shaded blue area).

3 Fitting procedure for Hahn echo and DD relaxation traces

Experimental Hahn echo and DD relaxation traces were fitted using an SE and SSE model, as defined in the main
text. A home-written Matlab script was used based on the non-linear least square solver 1sqcurvefit. Properties
of the decay curves, i.e. the initial intensity and the last recorded time point, defined generous upper limits as well
as bounds for initial values of the fitting parameters ¢; and Ty,. N fit results were obtained from launching the
least square minimization with N initial parameter value combinations from uniformly distributed pseudo-random
numbers within these bounds. The initial parameter range for Ty,, was set to a tenth of the respective T,, bounds.
This procedure was implemented to avoid local minima of the objective function, and consequently the fit associated
with the smallest root-mean-square deviation (RMSD) was chosen from the N results. In order to provide information
on the uncertainty of the selected parameter values, the 95% confidence interval were computed from the Jacobian
using the Matlab function nlparci for the dephasing time(s) and stretch parameter value(s). Note, that the fitting
parameters of the SSE model include the two absolute amplitudes ¢; and ¢;, from which the normalized amplitude
of the fast relaxation process is computed with A; = ¢1/(c1 + ¢;) to facilitate a more intuitive understanding. The
uncertainty associated with the A; parameter results from error propagation according to Eq. (1)

i o4, 2-0‘ 2 2.0-2+ I 2_0.2 o
= dci ¢ (CI+C2)2 c| (C]+C2)2 %)

where o corresponds to the standard error, from which the 95 % confidence interval of A; can be obtained. Note that
upper or lower confidence bounds that extend beyond the physically possible values of 1 and 0 were limited to these
values.

In cases where electron spin echo envelope modulation (ESEEM) was present in the relaxation traces, only the
modulation maxima were fed into the fitting procedure.® The Matlab function findpeaks helped to identify these
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data points. Uniform sampling was ensured by using the same sampling frequency in the time window beyond the
pronounced nuclear modulations.

3.1 Comparison: SE and SSE parameterization

The following sections 4, 5 and 6 show relaxation data along with SE and SSE fits for nitroxides, trityl radicals and
gadolinium complexes, respectively. In each case, the appropriate parameterization was chosen based on a comparison
between the fit quality of the SE and SSE parameterization. Specifically, Fig. Sa5 to Sa8 display fits to temperature-
dependent Hahn echo relaxation of H-NO and D-NO in H,O:glycerol and D,0O:glycerol-dg, and Fig. Sal2 to Sal5
compares the fits to DD data sets of H-mNOPEG and D-mNOPEG in the same solvents at 40 K. The comparison for
DD data of OX063 and OX071 at 110 K is presented in Fig. Sa22 to Sa25. Finally, Fig. Sa29 to Sa32 contrasts
the two relaxation models for DD data of Gd-NO3Pic, Gd-DOTA-M and Gd-PCTA in H,0O:glycerol and Gd-DOTA-M in
D,0:glycerol-dg at 10 K, recorded at the maximum of the gadolinium line (Bmax). For Gd-NO3Pic, Gd-DOTA-M and Gd-
PCTA in H,O:glycerol the same comparison was also performed for DD data acquired at the kink of the corresponding
gadolinium Q-band spectrum (Byini), shown in Fig. Sa36 to Sa38. In all these figures, the experimental data is shown
in blue, the fit in red and the associated residual in black. The dashed black line extends the fitted model into the
non-accessible dead time. Each subfigure title specifies the employed fit model, while the addition "(max)" indicates
pronounced nuclear modulation so that only the maxima served as input to the fit procedure as described in Section
3. The titles also specify the variable experimental condition, i.e. the specific temperature for the series of Hahn
echo measurements, or the employed pulse sequence for a DD data set at a fixed temperature. In the latter case,
CPn stands for Carr-Purcell and Un abbreviates Uhrig, while n indicates the number of used x pulses. In addition, the
underlying parameter values for the displayed fits are listed, rounded to two decimal points. The two contributions of
the SSE model are sorted by Ty, values, where index i = 1 marks the fast relaxation process identified by T, < Tr,, and
corresponds to the first elements in the reported c, A, Ty, and & vectors. Two green lines illustrate the two contributions
to the overall SSE fit in red.

4 Nitroxides

Based on the temperature-dependent Hahn relaxation of H-NO and D-NO in water-glycerol glass two distinct tem-
perature regimes are defined in the main text in section 3.2.1 in analogy to previous results in o-terphenyl. !* Section
4.1 shows the underlying experiment data along with SE/SSE fits and the resulting temperature-dependent stretched
exponential(s) parameter values. In the low-temperature regime (10-60 K) two separable relaxation pathways con-
tribute to the transverse relaxation as is evident from the prevailing SSE model and the selective effects from pulse
length variations shown in section 4.2. The SSE model was consequently applied to characterize the relaxation behav-
ior of all four sample compositions featuring H- or D-mNOPEG in H,O:glycerol or D,0:glycerol-dg at 40 K as shown
in detail in section 4.3. Additional DD experiments at 60 K were carried for H-mNOPEG in both H,O:glycerol and
D,0:glycerol-dg to illustrate the difference in temperature-dependence between protonated and deuterated solvents
arising somewhat above 40 K as also observed in case of o-terphenyl. ' Section 4.4 presents the resulting DD data.
Finally, the relaxation behavior of the small nitroxide H-NO is compared to the larger nitroxide H-mNOPEG at 40 and
60 K in section 4.5 to evaluate to what extent local motions in the glass voids influence the decoupling effect.

4.1 Temperature-dependent Hahn relaxation (10-140 K)

The individual Hahn relaxation traces along with fits based on the SE and SSE model are shown for H-NO in
H,O:glycerol in Fig. Sa5, for H-NO in D,0O:glycerol-dg in Fig. Sa6, for D-NO in H,O:glycerol in Fig. Sa7 and for
D-NO in D,0:glycerol-dg in Fig. Sa8 for temperatures between 10 and 140 K. A yellow highlight of a subplot’s title
indicates that the SSE model is clearly superior in fitting the experimental Hahn data, as the SE model underfits the
data visible from the strongly oscillating fit residuals. Instead, a blue highlight covering the two adjacent SE and
SSE subplots for a given temperature marks that both models lead to comparable fit qualities. In this case the sim-
pler SE model is chosen motivated by the parsimony principle. Fig. Sa4 compares the SE/SSE parameterization of
the temperature-dependent Hahn relaxation for a given nitroxide (H-NO or D-mNO) or matrix type (H,O:glycerol or
D,0:glycerol-dg.)

10
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Figure Sa4 SSE and SE parameterization of temperature-dependent Hahn echo relaxation recorded at a spin concentration of
100 uM using pulse lengths of t; =21, , = 12 ns. The table at the top defines how the markers encode the nitroxide and matrix
type, along with the appropriate relaxation model. Each subplot (a) to (d) compares the (S)SE parameters T, (top), & (middle)
and A; (bottom, only shown for the SSE model) as a function of temperature for a given matrix or nitroxide. The error bars mark
the 95% confidence intervals. (a) H-NO compared to D-NO in H,O:glycerol, (b) H-NO compared to D-NO in D,O:glycerol-dg, (c)

H-NO in H,O:glycerol compared to D,O:glycerol-dg and (d) D-NO in H,O:glycerol compared to D,O:glycerol-dg.
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Figure Sa5 Comparison of an SE and SSE fit to the temperature-dependent Hahn relaxation of 100 uM H-NO in H,O:glycerol
recorded at Bmax With 1z =21, 2 =12ns.
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Figure Sa6 Comparison of an SE and SSE fit to the temperature-dependent Hahn relaxation of 100 uM H-NO in D,O:glycerol-dg
recorded at Bmax With 1z =21, 2 =12ns.
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Figure Sa7 Comparison of an SE and SSE fit to the temperature-dependent Hahn relaxation of 100 uM D-NO in H,O:glycerol
recorded at Bmax With 1z =21, 2 =12ns.
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Figure Sa8 Comparison of an SE and SSE fit to the temperature-dependent Hahn relaxation of 100 uM D-NO in D,O:glycerol-dg
recorded at Bmax With 1z =21, 2 =12ns.
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4.2 Pulse length variation at 40 K

In both water-glycerol and o-terphenyl glass, SSE fits to low-temperature Hahn relaxation reveal two separate relax-
ation contributions that can be assigned based on nitroxide and/or solvent deuteration. Additionally, pulse length
variation can experimentally distinguish between the fast and slow relaxation pathway as already demonstrated for
o-terphenyl. ' Fig. Sa9 shows the effect of a reduced excitation bandwidth with #; =2-1;/, = 96 ns relative to strong
pulses with #7 =21/, = 12 ns. While nuclear spin diffusion (NSD) dominates the fast and/or slow relaxation com-
ponent in case of protonated nitroxide and/or solvent, the pulse length variation probes the contribution from in-
stantaneous diffusion (ID). The latter mechanisms dominates at sufficient high spin concentration, e.g. if NSD is
suppressed by deuteration. Consequently, pulse length variation affects the entire Hahn relaxation in case of D-NO
in D,0:glycerol-dg, while no difference between strong and soft pulses are observed for H-NO in H,O:glycerol. For
H-NO in D,0:glycerol-dg only the solvent-driven slow relaxation pathway is slowed by a reduced excitation pathway.
The limited pulse length effect on the fast relaxation process in D-NO in H,O:glycerol (also compared to D-mNOHex
in dOTP1?) is in line with the comparable fit quality for the SE and SSE model as shown in Fig. Sa7. As discussed in
the main text, the Hahn experiment is not able to fully resolve the two underlying processes, while experiments with
multiple refocusing pulses can do so, as demonstrated in Fig. Sal4 and Sall for D-mNOPEG in H,O:glycerol at 40 K.
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Figure Sa9 Pulse-length dependent Hahn relaxation recorded at a spin concentration of 100 uM and a temperature of 40 K at
Bmax.- (@) H-NO in H,O:glycerol, (b) D-NO in H,O:glycerol, (c) H-NO in D,O:glycerol-dg and (d) D-NO in D,O:glycerol-dg.
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4.3 Dynamical decoupling at 40 K
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Figure Sa10 DD data sets of H- and D-mNOPEG recorded at a spin concentration of 10 uM and a temperature of 40 K at Bpax

using pulse lengths of 7 =7, ,, = 12 ns. (a) H-mNOPEG in H,O:glycerol along with a legend that defines the color code for the
DD experiments. (b) H-mNOPEG in D,O:glycerol-dg, (c) D-mNOPEG in H,O:glycerol and (d) D-mNOPEG in D,O:glycerol-dg.
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Figure Sa11 SSE parameterization of DD data recorded at Bpax and 40 K for H- and D-mNOPEG (10 uM) in water-glycerol
glass: (a) H-mNOPEG in H,O:glycerol, (b) H-mNOPEG in D,O:glycerol-dg, (c) D-mNOPEG in H,O:glycerol, (d) D-mNOPEG in
D,O:glycerol-dg. Each column displays the fitting parameters Tn,, &;, A1 (top to bottom) with the associated 95% confidence
intervals for a particular sample as a function of n. The color encodes the DD experiment with Hahn ( ® ), CP/Uhrign =2 (@),
CPn>2(®)and Uhrign>2 (@), while empty circles correspond to the fast (i = 1), and filled to the slow (i = 2) relaxation
contribution. Lines in the T, subplots report linear regression results for experiment-specific 7r, increase with n for CP (black,
solid) and Uhrig (black, dashed), whereas a common Ty, gain with n (grey, dashed) was determined. All resulting slopes are
summarized in Table 1 in the main text. Black lines shown in the &; subplot serve as a guide for the eye to indicate &,
dependence on n for CP (solid) and Uhrig (dashed) experiments.
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Figure Sa12 Comparison of an SE and SSE fit to the DD data of 10 uM H-mNOPEG in H,O:glycerol recorded at 40 K and Bmax
with 7z =1, = 12 ns.
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Figure Sa13 Comparison of an SE and SSE fit to the DD data of 10 uM H-mNOPEG in D,O:glycerol-dg recorded at 40 K and
Bmax With 1z =1, 2 =12ns.
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Figure Sa14 Comparison of an SE and SSE fit to the DD data of 10 uM D-mNOPEG in H,O:glycerol recorded at 40 K and Bmax
with 7z =1, = 12 ns.
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Figure Sa15 Comparison of an SE and SSE fit to the DD data of 10 uM D-mNOPEG in D,0O:glycerol-dg recorded at 40 K and
Bmax With t; = tnjp = 12 ns.
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4.4 Dynamical decoupling at 60 K
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Figure Sa16 DD data sets of H-mNOPEG recorded at a spin concentration of 10 uM and a temperature of 60 K at Bmax Using
pulse lengths of tr =5, = 12 ns. (a) H-mNOPEG in H,O:glycerol along with a legend that defines the color code for the DD
experiments, (b) H-mNOPEG in D,O:glycerol-dg.

4.5 Dynamical decoupling comparison at 40 and 60 K

(a ‘ ‘ ;H-Né (b) 2 ;H-Né
52.5 H-mNOPEG | = H-mNOPEG
& S.15¢

E E

o1.571 o 1!

< =

[S] (]

w1 L

go5. \ \ NN 3 ™=

0t ‘ ‘ ) ‘ 0f ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
t [us] t [ps]

Figure Sa17 DD data set comparison between H-NO (dark colors) and H-mNOPEG (light colors) in H,O:glycerol. Recorded at a
spin concentration of 10 uM at Bmax using pulse lengths of tz =7/, = 12 ns at temperatures (a) 40 K and (b) 60 K. For a legend
that defines the color code for the DD experiments, see e.g. Fig. Sa10(a).
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5 Trityl radicals: OX063 and OX071

The Hahn decays of 0X063 and 0X071 in D,O:glycerol-dg were used to optimize the experimental conditions for DD
experiments. In section 5.1 the temperature is screened, while section 5.2 identifies the concentration that sufficiently
suppresses ID and addresses the effect of dissolved oxygen on the transverse relaxation of glassy trityl samples. Section
5.3 provides all experimental DD data, SE/SSE fits and scaling of the resulting stretched exponential(s) parameter
values with n for the four sample compositions of 0X063 and OX071 in H,O:glycerol and D,0:glycerol-dg.

5.1 Temperature-dependent Hahn relaxation (50-120 K)

The temperature range of 50 to 120 K was screened to identify a convenient shot repetition time (SRT) for the DD
experiments at some expense of the dephasing time as shown for 0X063 in D,0:glycerol-dg in Fig. Sal8(a). Solvent
deuteration clearly narrows the echo-detected linewidth of OX063 as presented in Fig. Sal8 by scaling the unresolved
hyperfine (HF) couplings to the solvent nuclei.

(a) 1 — 50 K (SRT = 18 ms) (b) g ——0X063, H20:glycerol
—— 60K (SRT =14 ms) _
=0.8) —— 70K (SRT= 7ms) =08} 0X071, H,O:glycerol
= —— 80K (SRT= 6ms) = | ——0X063, D,0:glycerok-d,
206! ——100K (SRT= 4 ms) | 206" ]
° 110K (SRT= 2 ms) 8
Al 120 K (SRT = 1.5 ms) | P
£ 04 £ 0.4
[e] o]
Z0.2+ Z0.2r
0t ! p——— 0 | ‘ ‘ ‘
0 50 100 150 -20 0 20 40 60
t [us] Aymw [MHZ]

Figure Sa18 (a) Temperature-dependent Hahn echo relaxation of OX063 in D,O:glycerol-dg recorded at a spin concentration of
10 uM at Bmax using pulse lengths of tz =, , = 12 ns. The dashed line marks the 10% reference level to determine T,%%,Dh“, and
the appropriate SRT for each temperature is reported in the legend. (b) Hahn-echo detected fieldsweep (shown on a relative

frequency axis with respect to Brax) recorded at spin concentration of 10 uM and a temperature of at 110 K. The asterisk marks

a small peak that originates from E’ centers in the quartz capillaries.

5.2 Concentration and oxygen effect

The trityl sample with the strongest NSD suppression was chosen, i.e. 0X071 in D,O:glycerol-dg, to detect the largest
possible effect of ID and oxygen on the low-temperature transverse relaxation of trityl radicals. The pulse-length
dependent Hahn relaxation in Fig. Sal9(a) demonstrates that ID is a relevant dephasing mechanism at 20 uM and
even at 10 uM a residual effect is visible. Dissolved oxygen induces an additional relaxation pathway if the atmosphere
is saturated by oxygen gas prior to flash-freezing the sample as evident from Fig. Sal9(b). However, degassing the
sample by ten freeze-pump-thaw cycles, nominally achieving 0 volume % oxygen, does not affect the Hahn relaxation
significantly as shown in Fig. Sa19(c). Therefore, a certain oxygen concentration in the atmosphere beyond 20 volume
% is required to activate this mechanism in the frozen state to an extent exceeding experimental uncertainty.

5.3 Dynamical decoupling at 110 K

DD data sets of 0X063 and OX071 in both H,O:glycerol and D,0O:glycerol-dg were acquired at Bmax under optimized
experimental conditions, namely at 110 K, 10 uM spin concentration and flash-freezing the sample under normal
atmospheric conditions. Fig. Sa20 presents the experimental results. As described in the main text, the required fitting
expression switches for the Hahn and DD experiments with n > 1. In the protonated solvent, the SSE model is required
for n > 1 as visible in Fig. Sa22 for 0X063 and in Fig. Sa24 for OX071. Yet, SSE fits to the Hahn decay result for
both trityl radicals in highly uncertain A; (and &;) parameter values along with a 7, of close to 0 us as shown in
Fig. Sa21(a) and (c) so that the SE model suffices. According to Fig. Sa23 and Sa25 the deuterated solvent leads to
the opposite observation as only the SSE expression can model the Hahn relaxation of 0X063 and OX071, while the
SE model fits the remaining DD data well.

The dependence of the stretched exponential(s) parameters on »n is discussed without taking the described model
switching into account. Therefore, Fig. Sa21 relies on the SSE parameterization in case of H,O:glycerol, while for
D,0:glycerol-dg the SE model is exclusively used.
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Figure Sa19 Hahn relaxation of OX071 in D,O:glycerol-dg recorded at Bmax. (@) Pulse-length dependent measurements
acquired at 50 K for spin concentrations of 10 and 20 uM. (b) Comparison of flash-freezing under normal or an oxygen-saturated
atmosphere by pulse-length dependent measurements acquired at 50 K for a spin concentration of 20 uM. (c) Effect of
degassing the sample by ten freeze-pump-thaw cycles relative to flash-freezing the sample under ambient atmosphere. The
measurement was performed at 110 K for a spin concentration of 10 uM and using pulse lengths of tz =1, = 12 ns.
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Figure Sa20 DD data sets of OX063 and OX071 recorded at a spin concentration of 10 uM and a temperature of 110 K at Bmax
using pulse lengths of 7 =7, ,, = 12 ns. (a) OX063 in H,O:glycerol along with a legend that defines the color code for the DD
experiments. (b) OX063 in D,O:glycerol-dg, (c) OX071 in H,O:glycerol and (d) OX071 in D,O:glycerol-dg.
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Figure Sa21 Stretched exponential(s) parameterization of DD data recorded at Bpmax and 110 K for OX063 and OX071 (10 uM) in
water-glycerol glass: (a) SSE for OX063 in H,O:glycerol, (b) SE for OX063 in D,0O:glycerol-dg, (c) SSE for OX071 in
H,O:glycerol, (d) SE for OX071 in D,O:glycerol-dg. Each column displays the fitting parameters Ty, &, A; (top to bottom) with the
associated 95% confidence intervals for a particular sample as a function of n. The color encodes the DD experiment with Hahn (
®), CP/Uhrign=2(®),CPn>2(®)and Uhrign>2 (®). SE parameters values are marked by filled circles, while for the SSE
model empty circles correspond to the fast (i = 1), and filled to the slow (i = 2) relaxation contribution. Black lines shown in the &;
subplot serve as a guide for the eye to indicate the & dependence on n for CP (solid) and Uhrig (dashed) experiments. For
subplot corresponding to trityls in H,O:glycerol, lines in the Tp,; subplots report linear regression results for experiment-specific
Tm, increase with n for CP (black, solid) and Uhrig (black, dashed), whereas a common Tr,, gain with n (grey, dashed) was
determined and summarized in Table 1 in the main text. The SE model for trityls in D,O:glycerol-dg results in a sub-linear
increase of T, with n, that is modeled by a power-law « n” as reported in the main text.
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Figure Sa22 Comparison of an SE and SSE fit to the DD data of 10 uM OX063 in H,O:glycerol recorded at 110 K and Bax with
tx =tgp=12n8,
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Figure Sa23 Comparison of an SE and SSE fit to the DD data of 10 uM OX063 in D,O:glycerol-dg recorded at 110 K and Bmax
with tz =1, =12 ns.
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Figure Sa24 Comparison of an SE and SSE fit to the DD data of 10 uM OX071 in H,O:glycerol recorded at 110 K and Bmax with
tx =tg;p=12n8.
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Figure Sa25 Comparison of an SE and SSE fit to the DD data of 10 uM OX071 in D,O:glycerol-dg recorded at 110 K and Bmax
with 1z =1, = 12 ns.
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6 Gd(II) complexes: Gd-NO3Pic, Gd-DOTA-M, Gd-PCTA

Based on the Q-band Hahn relaxation results presented in Fig. Sa26 in section 6.1 a concentration of 25 uM and a
temperature of 10 K was chosen to determine the effect of the zero field splitting (ZFS) on the relaxation behavior
under DD experiments. All experimental results are provided in section 6.2.

6.1 Concentration and temperature effect

(a) 1 | _Bmax‘: 12-12ns | (b) i
| —15K
'E: 08 Bmax' 48-48 ns ] E =
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Figure Sa26 Q-band Hahn relaxation recorded at a spin concentration of 25 uM. (a) Pulse-length dependent relaxation of
Gd-DOTA-M in D,0O:glycerol-dg at 10 K acquired at Bmax and Byjyi (-5 mT = -140 MHz relative to Bmax). (b)
Temperature-dependent relaxation of Gd-NOsPic in H,O:glycerol recorded at Bmax. The dashed line marks the 10% reference
level to determine 712",

6.2 Dynamical decoupling at 10 K

All gadolinium DD measurements were acquired at Q band if not otherwise specified. The DD results recorded at Bpax
for Gd-NO3Pic, Gd-DOTA-M and Gd-PCTA in H,O:glycerol and Gd-DOTA-M in D, O:glycerol-dg are shown in Fig. Sa27.
According to Fig. Sa29, Sa30 and Sa31 the SSE expression is required to model the DD traces in H,O:glycerol. For
Gd-DOTA-M in D,0:glycerol-dg the SE model is sufficient as evident from Fig. Sa32. Fig. Sa28 compares the scaling
of the stretched exponential(s) parameter values with n for all four samples at Bnpax. Applying the refocusing pulses
at By instead of Bnax deteriorates the refocusing effect as demonstrated for the protonated solvent in Fig. Sa34.
Fig. Sa36, Sa37 and Sa38 show that the echo decays can be modeled by the SE expression, leading to a sub-linear
increase of T, with n as visible from Fig. Sa35 for all three gadolinium(III) complexes. The relative loss in coherence
time at Byink is expected to be even larger in D,O:glycerol-dg. Fig. Sa33 supports this claim by comparing the relax-
ation under the Hahn and CP n = 2 experiment for Gd-DOTA-M in H,O:glycerol and D, O:glycerol-dg at Bmax and Byi.

Performing the DD experiments at W band instead of Q band somewhat slows the decoherence at Bpax due to a
more selective excitation of the |mg| = 1/2 transition as discussed in the main text. Fig. Sa39 shows this effect for
Gd-NOsPic in H,0:glycerol.
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Figure Sa27 DD data sets of gadolinium(Ill) complexes recorded at a spin concentration of 25 uM and a temperature of 10 K at
Bmax Using pulse lengths of 7x =1, , = 12 ns. (a) Gd-NO3Pic in H,O:glycerol along with a legend that defines the color code for
the DD experiments. (b) Gd-DOTA-M in H,O:glycerol, (¢) Gd-PCTA in H,O:glycerol and (d) Gd-DOTA-M in D,O:glycerol-dg.
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Figure Sa28 Stretched exponential(s) parameterization of DD data recorded at Bmax and 10 K for Gd-NO;Pic, Gd-DOTA-M and
Gd-PCTA (25 uM) in water-glycerol glass: (a) SSE for Gd-NO3Pic in H,O:glycerol, (b) SSE for Gd-DOTA-M in H,O:glycerol, (c)
SSE for Gd-PCTA in H,O:glycerol, (d) SE for Gd-DOTA-M in D,O:glycerol-dg. Each column displays the fitting parameters Tp,, &,
A (top to bottom) with the associated 95% confidence intervals for a particular sample as a function of n. The color encodes the
DD experiment with Hahn (® ), CP/Uhrign=2 (®), CPn>2 (®) and Uhrign > 2 ( ® ). SE parameters values are marked by
filled circles, while for the SSE model empty circles correspond to the fast (i = 1), and filled to the slow (i = 2) relaxation
contribution. Black lines shown in the &; subplot serve as a guide for the eye to indicate the &, dependence on n for CP (solid)
and Uhrig (dashed) experiments. For subplots corresponding to gadolinium(lIl) complexes in H,O:glycerol, lines in the Ty,
subplots report linear regression results for experiment-specific Tr,, increase with n for CP (black, solid) and Uhrig (black,
dashed), whereas a common Tr,, gain with n (grey, dashed) was determined and summarized in Table 1 in the main text. The SE
model for Gd-DOTA-M in D,O:glycerol-dg results in a sub-linear increase of T, with », that is modeled by a power-law o n? as
reported in the main text.
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Figure Sa29 Comparison of an SE and SSE fit to the DD data of 25 uM Gd-NOsPic in H,O:glycerol recorded at 10 K and Bpax

with 1z =1, = 12 ns.
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Figure Sa30 Comparison of an SE and SSE fit to the DD data of 25 uM Gd-DOTA-M in H,O:glycerol recorded at 10 K and Bmax
with 1z =1, = 12 ns.
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Figure Sa31 Comparison of an SE and SSE fit to the DD data of 25 uM Gd-PCTA in H,O:glycerol recorded at 10 K and Bmax

with tz =1, =12 ns.
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Figure Sa32 Comparison of an SE and SSE fit to the DD data of 25 uM Gd-DOTA-M in D,O:glycerol-dg recorded at 10 K and
Brax With 17 = Izjp=12ns.
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Figure Sa33 Difference between the relaxation behavior of Gd-DOTA-M recorded at Bmax and Byi,k (-5 mT = -140 MHz relative to
Bmax) With ¢z = 17/, = 12 ns. (a) Hahn relaxation of Gd-DOTA-M in H,O:glycerol, (b) Hahn relaxation of Gd-DOTA-M in
D,0:glycerol-dg, (c) CP n = 2 relaxation of Gd-DOTA-M in H,O:glycerol and (d) CP » = 2 relaxation of Gd-DOTA-M in
D,O:glycerol-dg.
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Figure Sa34 DD data sets of gadolinium(lll) complexes in H,O:glycerol recorded at a spin concentration of 25 uM and a
temperature of 10 K at By, using pulse lengths of 17 =1, , = 12 ns. (a) Gd-NO;Pic in H,O:glycerol (Byjnk = Bmax - 3.4 mT or -

95 MHz) along with a legend that defines the color code for the DD experiments. (b) Gd-DOTA-M in H,O:glycerol (Byjnx = Bmax -
5 mT or - 140 MHz) and (¢) Gd-PCTA in H,O:glycerol (Byink = Bmax - 22 mT or - 616 MHz).
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Figure Sa35 SE parameterization of DD data recorded at By;,x and 10 K for Gd-NO;Pic, Gd-DOTA-M and Gd-PCTA (25 uM) in
H,O:glycerol: (a) Gd-NOsPic in H,O:glycerol (Byjnx = Bmax - 3.4 mT or - 95 MHz) , (b) Gd-DOTA-M in H,O:glycerol (Byjnk = Bmax
-5 mT or - 140 MHz) and (¢) Gd-PCTA in H,O:glycerol (Byink = Bmax - 22 mT or - 616 MHz). Each column displays the fitting
parameters T, &, Ay (top to bottom) with the associated 95% confidence intervals for a particular sample as a function of n. The
color encodes the DD experiment with Hahn (® ), CP/Uhrign=2 (®), CP n>2 (®) and Uhrig n > 2 ( ®). Black lines shown in
the & subplot serve as a guide for the eye to indicate the & dependence on n for CP (solid) and Uhrig (dashed) experiments. The
relationship between Tp,, and n is modelled by a power-law « n? with y values between 0.5 and 0.6.
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Figure Sa36 Comparison of an SE and SSE fit to the DD data of 25 uM Gd-NOsPic in H,O:glycerol recorded at 10 K and By,i
(= Bmax - 3.4 mT or - 95 MHz) with 1z =1, , = 12 ns.

40



Supporting Information part A  Sa4l

= Experiment = SE/SSE fit for t> 0 ns ~=SE components of SSE fit =——Residual === SE/SSE fit into unaccessible dead time ‘
g % 10°  Hahn, SE g % 10°  Hahn, SSE «10°  cP2,SE %x10°  cP2, SSE
_ ¢ =7.26+06 ¢ = [36+06 5.7¢+06] —4 ¢ =4.4+06 4 G = [2.6+06 2.3e+06]
36 A=1 6 A=[0.34 0.66] 3 A=1 A=[0.54 0.46]
o, T, lusl=4.9 T, lus]=[1.16 5.35] <3 T, [us]=7.87 3 T, [1S]= [4.23 10.03]
€4 =171 4 £=[0.64 2.05] £, =173 o £=[1.192.69]
F ' 4
<2 2 K <
0EN 0
0 10 20 30 0 10 20 30 0 20 40 0 20 40
x10® U3 sE «10° U3, SSE «10°  cP3,sE «10°  cP3, SSE
S ¢ =3.20+06 g © = [2.26+06 1.2e+06) -3 ¢ =326+06 3 ¢ = [1.6e+06 1.9e+06]
3 A=1 A=[0.650.35] 3 A=1 A=[0.46 0.54]
P T, [us1=9.75 21 T [us] = [6.15 14.27) ) T, [us] =9.71 2 T [us] = [4.83 12.32]
e £=154 £=[1.322.75] S £=157 £=[1.18 2.14]
g 1 1 g
< <
0 B 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
%«10°  ua, SE %x10°  ua, SSE x10®  cPa,SE %«10°  cP4, SSE
\
— 2 c=2.3e+06 2r ¢ = [1.96+06 5.1e+05] — 2 c=23e+06 2 ¢ = [1.4e+06 1.26+06]
El A=1 A=[0.790.21] 3 A=1 A=[0.54 0.46]
& 1.5 T, [us]=11.46 1.5 T, [us] = [8.76 19.6] £15 T, lusl=11.75 1.5 . T, lus] = [6.79 15.68]
IS =145 1 £=[1.423.03] IR £=157 1 £=[1.292.25]
@ @
<05 05 205 05
0 0 0L 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
x10° U5, SE %x10°  us, SSE «10°  cP5, SE «10°  cp5, SSE
T v
15 15 \
— ¢ =1.8¢+06 ¢ =[1.7e+06 1.5e+05] 15 ¢ =1.8¢+06 15 ¢ = [1.36+06 6.3¢+05]
3 A=1 A=[0.920.08] 5 A=1 \ A=[0.670.33]
% 10 T, [us] = 13.09 10 T, lus] = [11.71 27.65 % 10 T, [us]=13.29 101" T, [us]=[9.32 19.7)
E £=141 £=[1.484.84] E £=145 £=[1.322.18]
8 5 85 5
< <
0 0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

t[ps] t[ps] tus]

t[us]

Figure Sa37 Comparison of an SE and SSE fit to the DD data of 25 uM Gd-DOTA-M in H,O:glycerol recorded at 10 K and By
(= Bmax - 5 mT or - 140 MHz) with 1z =1, = 12 ns.

41



Supporting Information part A Sa42

=——Experiment = SE/SSE fit for t> 0 ns ~=SE components of SSE fit =——Residual === SE/SSE fit into unaccessible dead time ‘
g 10°  Hahn, SE g 10°  Hahn, SSE x10%  cP2,SE %x10°  cP2, SSE
_ c=7.3e+06 ¢ = [2.16+06 6e+06] _ ¢ =4.9e+06 ¢ = [36+06 2.36+06]
56 A=1 6 A=[0.250.75] 54 A=1 4 A=1[0.56 0.44]
&, T, [us]=443 T, lus] =[1.15.01] <, T, [us1=66 . T, [us] = [3.618.97)
£4 £=155 4 £=[1.081.87] = £=153 £=[1.192.35]
8 8
22 2 \\ 2
0 0
0 10 20 30 0 10 20 30 20 40 0 20 40
x10® U3, SE %x10® U3, SSE x10®  cP3,SE «10%  cP3, SSE
— c = 3.6e+06 3 ¢ =[2.8e+06 3.6e+06] —3 c = 3.6e+06 3 ¢ = [2.4e+06 1.6e+06]
3 A=1 1 A=1[0.430.57] 3 A=1 A=1[0.604]
< o T, [ns]=7.92 > | T, lus] =[0.53 7.92] < . T, [us]=8.02 S T, [us] = [4.78 11.31]
£ £=142 : £=[4.141.42) £ £=144 £=[1.22.13]
% | %)
2! i <
|
0 0 L
0 20 40 0 20 40 20 40 0 20 40
x10°  ua,SE %x10° U4, SSE x10®  cP4,sE %x10°  cP4, SSE
)
— c=2.8e+06 ¢ =[1.9e+06 2.8e+06] — G =2.8e+06 c=[1.8e+06 1.2e+06]
32 A=1 2y A=[0.40.6] 52 A=1 2 A=[0.60.4]
&, T, [us]=9.21 | T, [us] = [0.87 9.21] <, T, [us] =954 \\ T, [us]=[5.87 13.42]
S £=1.39 | £=[4.28 1.39] < £=144 £=[1.242.07]
R 11 o
Q | Q
< | <
0 ol 0
0 20 40 60 0 20 40 60 20 40 60 0 20 40 60
x10°  Us,SE %10°  Us, SSE «10®  cps, SE «10°  cP5, SSE
T T 2 2
— 15 ¢ =2.2e+06 15 'l ¢ =[6.4e+06 2.1e+06] —_ ¢ =2.3e+06 ¢ =[8.1e+05 1.8e+06]
3 A=1 | A=1[0.750.25] 515 A=1 1.5 A=[0.310.69]
<10 T, 18] = 1057 1ol 1\ Tnlusl=1177107) s T, [is] = 1088 T [us] = 3.8 12.55]
E =141 | £=[1.851.43] 1 £=1.42 1 £=[1.08 1.63]
@ ! @ \
25 511 205 05"
| K
0 oLt 0 0
0 20 40 60 0 20 40 60 20 40 60 0 20 40 60
t[us] t[us] t[us] tps]

Figure Sa38 Comparison of an SE and SSE fit to the DD data of 25 uM Gd-PCTA in H,O:glycerol recorded at 10 K and B,k
(= Bmax - 22 mT or - 616 MHz) with t; = tzy2=12ns.
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Figure Sa39 Comparison between Q- and W-band DD results for 25 uM Gd-NOj3Pic in H,O:glycerol recorded at 10 K and Byy,.
Due to the different time resolution of the spectrometers, the Q-band data was acquired using pulse lengths with 7z =1/, = 12
ns, while the W-band pulse lengths are 7z =;,, = 16 ns. The traces are separately displayed by number of pulses » with (a)
Hahn, (b) CP n =2, (c) CP and Uhrig n =3, (d) CP (cyan) and Uhrig n = 4 and (d) CP and Uhrig n = 5. The colored traces
correspond to the W-band data using the same color code as defined in legend in Fig. Sa34(a), while the darker (CP) and lighter
(Uhrig) grey represent the Q-band results.
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