Supporting Information for: Molecular-Scale Origins of Solution Nanostructure and Excess Thermodynamic Properties in a Water/Amphiphile Mixture

Michael J. Servis,* Marek Piechowicz, S. Skanthakumar, and L. Soderholm

Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439

E-mail: mservis@anl.gov

Figure S1: Comparison of experimental percent excess volume for 25° and 30° C.

Figure S2: Water hydrogen bonded cluster distributions for $\chi_{\text{TMMA}} = 0.341$ (left) and $\chi_{\text{TMMA}} = 0.371$ (right) for different O-H...O angle cutoffs.

Figure S3: Water oxygen-oxygen RDFs for each simulation. Data for compositions with $\chi_{\text{TMMA}} \ge 0.423$ are extended by 100 ns for improved statistical accuracy.

Figure S4: The water cluster size distributions for the TMMA-rich compositions are plotted for the 50 ns production trajectory (left panel) and for extended trajectories with an additional 100 ns (right panel).

The high-energy incident photons provide an adequate q range both for normalizing intensities and sufficient peak resolution in g(r) after Fourier transform. The total scattering function, S(q), was obtained from the experimental data using weighting factors determined based on relative atomic concentrations and appropriate form factors, as described in detail elsewhere.^{1–3} The total experimental pair correlation functions, g(r), was obtained from S(q)by Fourier transform,

$$g(r) = 1 + \frac{1}{2\pi^2 \rho_0 r} \int q(S(q) - 1)\sin(qr)dq,$$
(1)

where ρ_0 is the average atomic density, and plotted in Figure S2.

Scattering intensities, I(q), are computed as described by Walter et al.⁴ for the periodic simulation box with

$$I(q) = \sum_{i}^{N} \sum_{i \neq j}^{N} f_i(q) f_j(q) e^{-iqr_{ij}},$$
(2)

where r_{ij} is the distance between atoms i and j and $f_i(q)$ is the atomic form factor for atom

i determined by Cromer-Mann expansions.⁵ Intensities were normalized by a scalar factor for comparison to experimental data.

Figure S5: Pair distribution function generated by the Fourier transform of the experimental X-ray scattering data.

Simulation Lennard-Jones parameters for TMMA are provided in Table S1, with mixed terms derived using Lorentz-Berthelot mixing rules. The bonded potential parameters for TMMA are given in the GROMACS .itp topology file at the end of this document.

Atom	σ_{ii}	ϵ_{ii}
name	[nm]	[kJ/mol]
H1	0.2422	0.0870
HC	0.2600	0.0870
CT	0.3398	0.4510
C	0.3315	0.4134
N	0.3181	0.6845
0	0.3048	0.6121

Table 1: Lennard-Jones parameters for TMMA atoms.

References

- Soderholm, L.; Skanthakumar, S.; Gorman-Lewis, D.; Jensen, M.; Nagy, K. Characterizing solution and solid-phase amorphous uranyl silicates. *Geochimica et Cosmochimica Acta* 2008, 72, 140–150.
- (2) Egami, T.; Billinge, S. Underneath the Bragg Peaks: Structural Analysis of Complex Materials; Pergamon Materials Series; Elsevier Science, 2003.
- (3) Als-Nielsen, J.; McMorrow, D. Elements of Modern X-ray Physics; Wiley, 2011.
- (4) Walter, N. P.; Jaiswal, A.; Cai, Z.; Zhang, Y. LiquidLib: A comprehensive toolbox for analyzing classical and ab initio molecular dynamics simulations of liquids and liquid-like matter with applications to neutron scattering experiments. *Computer Physics Communications* **2018**, *228*, 209–218.
- (5) Cromer, D. T.; Mann, J. B. X-ray scattering factors computed from numerical Hartree– Fock wave functions. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 1968, 24, 321–324.

; gaff2 TMMA

[moleculetype]

; Name	nrexcl
TMMAL	3

[atoms]

;AT.NUM	TYPE	RESID	RESNAME PD	B-NAME	IGRP	CHRGE	MASS
1	CT	1	TMMAL	C1	1	0.0185	12.0100
2	H1	1	TMMAL	H1	1	0.0481	1.0080

3	H1	1	TMMAL	H2	1	0.0481	1.0080
4	H1	1	TMMAL.	НЗ	1	0.0481	1.0080
5	CT	1	TMMAL	C2	2	0.0061	12.0100
6	H1	1	TMMAL	H4	2	0.0519	1.0080
7	H1	1	TMMAL	H5	2	0.0519	1.0080
8	H1	1	TMMAL	H6	2	0.0519	1.0080
9	CT	1	TMMAL	C3	3	-0.2247	12.0100
10	HC	1	TMMAL	H7	3	0.0942	1.0080
11	HC	1	TMMAL	H8	3	0.0942	1.0080
12	CT	1	TMMAL	C4	4	0.0178	12.0100
13	H1	1	TMMAL	H9	4	0.0482	1.0080
14	H1	1	TMMAL	H10	4	0.0482	1.0080
15	H1	1	TMMAL	H11	4	0.0482	1.0080
16	CT	1	TMMAL	C5	5	0.0061	12.0100
17	H1	1	TMMAL	H12	5	0.0518	1.0080
18	H1	1	TMMAL	H13	5	0.0518	1.0080
19	H1	1	TMMAL	H14	5	0.0518	1.0080
20	Ν	1	TMMAL	N1	6	-0.2418	14.0100
21	С	1	TMMAL	C6	6	0.5072	12.0100
22	0	1	TMMAL	01	6	-0.5715	16.0000
23	С	1	TMMAL	C7	7	0.5072	12.0100
24	0	1	TMMAL	02	7	-0.5715	16.0000
25	N	1	TMMAL	N2	7	-0.2418	14.0100

[bonds]

;	I1	12	TYPE	r0(nm)	K(kJ/nm^2/mol)	
	1	2	1	0.1097	157284.929	

1	3	1	0.1097	157284.929
1	20	1	0.1462	110361.368
1	4	1	0.1097	157284.929
5	6	1	0.1097	157284.929
5	7	1	0.1097	157284.929
5	8	1	0.1097	157284.929
5	20	1	0.1462	110361.368
9	10	1	0.1097	157284.929
9	21	1	0.1524	101763.248
9	23	1	0.1524	101763.248
9	11	1	0.1097	157284.929
12	13	1	0.1097	157284.929
12	14	1	0.1097	157284.929
12	25	1	0.1462	110361.368
12	15	1	0.1097	157284.929
16	17	1	0.1097	157284.929
16	18	1	0.1097	157284.929
16	19	1	0.1097	157284.929
16	25	1	0.1462	110361.368
20	21	1	0.1379	149038.265
21	22	1	0.1218	273035.289
23	24	1	0.1218	273035.289
23	25	1	0.1379	149038.265

[angles]

;	I1	12	13	TYPE	theta(deg)	K(kJ/rad^2/mol)
	1	20	5	1	115.64	271.45792

1	20	21	1	120.69	273.01437
2	1	3	1	108.46	162.34757
2	1	20	1	108.88	257.50010
2	1	4	1	108.46	162.34757
3	1	20	1	108.88	257.50010
3	1	4	1	108.46	162.34757
4	1	20	1	108.88	257.50010
5	20	21	1	120.69	273.01437
6	5	7	1	108.46	162.34757
6	5	8	1	108.46	162.34757
6	5	20	1	108.88	257.50010
7	5	8	1	108.46	162.34757
7	5	20	1	108.88	257.50010
8	5	20	1	108.88	257.50010
9	21	20	1	115.18	352.56895
9	21	22	1	123.20	353.76557
9	23	24	1	123.20	353.76557
9	23	25	1	115.18	352.56895
10	9	21	1	108.77	198.36762
10	9	23	1	108.77	198.36762
10	9	11	1	107.58	163.00864
11	9	21	1	108.77	198.36762
11	9	23	1	108.77	198.36762
12	25	16	1	115.64	271.45792
12	25	23	1	120.69	273.01437
13	12	14	1	108.46	162.34757
13	12	25	1	108.88	257.50010

13	12	15	1	108.46	162.34757
14	12	25	1	108.88	257.50010
14	12	15	1	108.46	162.34757
15	12	25	1	108.88	257.50010
16	25	23	1	120.69	273.01437
17	16	18	1	108.46	162.34757
17	16	19	1	108.46	162.34757
17	16	25	1	108.88	257.50010
18	16	19	1	108.46	162.34757
18	16	25	1	108.88	257.50010
19	16	25	1	108.88	257.50010
20	21	22	1	123.05	476.18523
21	9	23	1	111.63	273.73402
24	23	25	1	123.05	476.18523

[pairs]

; I1 I4

6

1

- 1 7 1 8 1 9 1 22 2 5 2 21 3 5
- 3 21
- 4 5

4	21	
5	9	
5	22	
6	21	
7	21	
8	21	
9	12	
9	16	
10	20	
10	22	
10	24	
10	25	
11	20	
11	22	
11	24	
11	25	
12	17	
12	18	
12	19	
12	24	
13	16	
13	23	
14	16	
14	23	
15	16	
15	23	
16	24	

17 23 18 23 19 23 20 23 21 24

- 21 25
- 22 23

[dihedrals]

;	I1	12	13	14	TYPE	theta(deg)	K(kJ/rad^2/mol)	N
	1	20	5	6	9	0.0000	0.0000	2
	1	20	5	7	9	0.0000	0.0000	2
	1	20	5	8	9	0.0000	0.0000	2
	1	20	21	9	9	180.0000	1.0878	2
	1	20	21	9	9	0.0000	2.0920	1
	1	20	21	22	9	180.0000	10.4600	2
	2	1	20	5	9	0.0000	0.0000	2
	2	1	20	21	9	0.0000	0.0000	2
	3	1	20	5	9	0.0000	0.0000	2
	3	1	20	21	9	0.0000	0.0000	2
	4	1	20	5	9	0.0000	0.0000	2
	4	1	20	21	9	0.0000	0.0000	2
	5	20	21	9	9	180.0000	1.0878	2
	5	20	21	9	9	0.0000	2.0920	1
	5	20	21	22	9	180.0000	10.4600	2
	6	5	20	21	9	0.0000	0.0000	2
	7	5	20	21	9	0.0000	0.0000	2

8	5	20	21	9	0.0000	0.0000	2
9	23	25	12	9	180.0000	1.0878	2
9	23	25	12	9	0.0000	2.0920	1
9	23	25	16	9	180.0000	1.0878	2
9	23	25	16	9	0.0000	2.0920	1
10	9	21	20	9	0.0000	0.0000	2
10	9	21	22	9	0.0000	3.4727	1
10	9	21	22	9	180.0000	0.1674	3
10	9	23	24	9	0.0000	3.4727	1
10	9	23	24	9	180.0000	0.1674	3
10	9	23	25	9	0.0000	0.0000	2
11	9	21	20	9	0.0000	0.0000	2
11	9	21	22	9	0.0000	3.4727	1
11	9	21	22	9	180.0000	0.1674	3
11	9	23	24	9	0.0000	3.4727	1
11	9	23	24	9	180.0000	0.1674	3
11	9	23	25	9	0.0000	0.0000	2
12	25	16	17	9	0.0000	0.0000	2
12	25	16	18	9	0.0000	0.0000	2
12	25	16	19	9	0.0000	0.0000	2
12	25	23	24	9	180.0000	10.4600	2
13	12	25	16	9	0.0000	0.0000	2
13	12	25	23	9	0.0000	0.0000	2
14	12	25	16	9	0.0000	0.0000	2
14	12	25	23	9	0.0000	0.0000	2
15	12	25	16	9	0.0000	0.0000	2
15	12	25	23	9	0.0000	0.0000	2

16	25	23	24	9	180.0000	10.4600	2
17	16	25	23	9	0.0000	0.0000	2
18	16	25	23	9	0.0000	0.0000	2
19	16	25	23	9	0.0000	0.0000	2
20	21	9	23	9	0.0000	0.0000	2
21	9	23	24	9	0.0000	5.6902	1
21	9	23	24	9	180.0000	0.7531	3
21	9	23	25	9	0.0000	0.0000	2
22	21	9	23	9	0.0000	5.6902	1
22	21	9	23	9	180.0000	0.7531	3
20	5	1	21	4	180.0000	4.6024	2
21	20	9	22	4	180.0000	43.9320	2
23	24	9	25	4	180.0000	43.9320	2
25	16	12	23	4	180.0000	4.6024	2

[system]

TMMAL

[molecules]

TMMAL O