Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Electronic Supplementary Information (ESI) for PCCP. This journal is © The Royal Society of Chemistry 2021

A Strategy for Enhancing the Photoactivity of g-C₃N₄-based Singleatom Catalysts via Sulphur Doping: A Theoretical Study

Yanqing Guo, a Meng Xia, a Mingkun Zhang, a Jing Zou, a Yue You, a Wei Cheng b and Junfeng Dou *a

a. College of Water Sciences, Beijing Normal University, Beijing 100875, China.

^{b.} Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Species	Structure parameters			D 1	Bond	Bond
	a/Å	b/Å	c/Å	- Bond	length/Å	populations
g-C ₃ N ₄	7.15	7.15	7.50	C1-N1	1.39	0.81
				C1-N2	1.33	1.03
				C2-N2	1.34	1.04
				C2-N3	1.47	0.76
$S-g-C_3N_4$	7.16	7.14	7.52	C1-N1	1.35	0.83
				C1-S	1.74	0.44
				C2-S	1.79	0.65
				C2-N3	1.44	0.79
$Pt/g-C_3N_4$	7.17	7.16	7.54	C1-N1	1.36	0.84
				C1-N2	1.33	1.07
				C2-N2	1.35	0.97
				C2-N3	1.45	0.80
				N4-Pt	2.18	0.20
				N6-Pt	2.19	0.20
Pt/ S-g-C ₃ N ₄	6.95	6.70	9.33	C1-N1	1.36	0.90
				C1-S	1.81	0.59
				C2-S	1.86	0.51
				C2-N3	1.44	0.75
				S-Pt	2.16	0.44
				N5-Pt	2.19	0.23

Table S1 Structure parameters, bond lengths (Å) and bond populations of $g-C_3N_4$, $S-g-C_3N_4$, $Pt/g-C_3N_4$ and $Pt/S-g-C_3N_4$.

Species	Atom	Mulliken charge population					
		S	р	d	Charge/ e		
g-C ₃ N ₄	C1	0.91	2.58	0	0.51		
	C2	0.94	2.58	0	0.48		
	N1	1.41	3.92	0	-0.33		
	N2	1.53	3.85	0	-0.39		
	N3	1.43	3.87	0	-0.30		
	N4	1.53	3.85	0	-0.39		
	N5	1.53	3.85	0	-0.39		
	N6	1.53	3.85	0	-0.39		
S-g-C ₃ N ₄	C1	1.05	2.77	0	0.18		
	C2	1.05	2.80	0	0.15		
	N1	1.41	3.93	0	-0.34		
	N3	1.43	3.86	0	-0.28		
	N4	1.50	3.96	0	-0.46		
	N5	1.54	3.86	0	-0.40		
	N6	1.52	3.87	0	-0.40		
	S	1.82	3.72	0	0.46		
Pt/g-C ₃ N ₄	C1	0.91	2.62	0	0.47		
	C2	0.94	2.61	0	0.45		
	N1	1.40	3.95	0	-0.35		
	N2	1.52	3.92	0	-0.44		
	N3	1.42	3.87	0	-0.29		
	N4	1.53	3.90	0	-0.44		
	N5	1.51	3.92	0	-0.43		
	N6	1.53	3.90	0	-0.44		
	Pt	0.57	-0.16	8.81	0.77		
Pt/S-g-C ₃ N ₄	C1	1.06	2.75	0	0.19		
	C2	1.07	2.79	0	0.14		
	N1	1.41	3.92	0	-0.32		
	N3	1.40	3.89	0	-0.28		
	N4	1.55	3.86	0	-0.42		
	N5	1.54	3.92	0	-0.46		
	N6	1.53	3.87	0	-0.40		
	S	1.78	3.86	0	0.37		
	Pt	0.72	-0.12	9.18	0.22		

Table S2 Mulliken charge populations of g-C $_3N_4$, S-g-C $_3N_4$, Pt/g-C $_3N_4$ and Pt/S-g-C $_3N_4$.

Fig. S1 Density of states of deep states of $g-C_3N_4$ (a), $S-g-C_3N_4$ (b), $Pt/g-C_3N_4$ (c) and $Pt/S-g-C_3N_4$ (d), where the N1 2s state marked by an arrow is used as the reference.

Fig. S2 Calculated electron density difference of $g-C_3N_4$ (a), $S-g-C_3N_4$ (b), $Pt/g-C_3N_4$ (c)and $Pt/S-g-C_3N_4$ (d). The cyan region indicates electron accumulation, and the olive color region represents electron depletion. The isovalue is set as 0.05 electron/Å³.

Fig. S3 Absorption spectrum of g-C₃N₄, S-g-C₃N₄, Pt/g-C₃N₄ and Pt/S-g-C₃N₄.