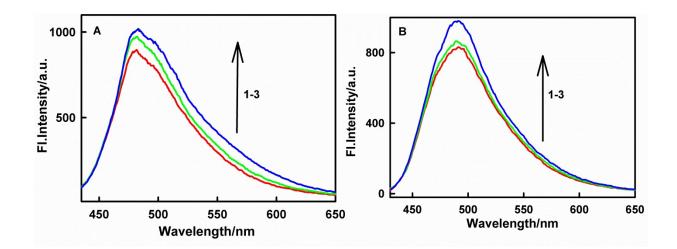
## **Supporting Information**

## Effect of counter-anion on the aggregation of

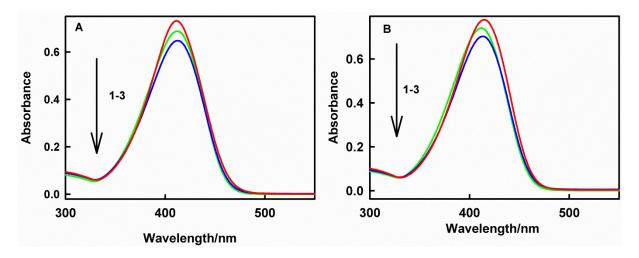
## thioflavin-T

Akshat M. Desai,<sup>a</sup> Shrishti P. Pandey,<sup>a,c</sup> and Prabhat K. Singh<sup>a,b,\*</sup>

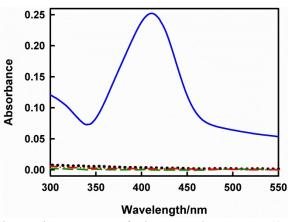
<sup>a</sup>Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085,


INDIA

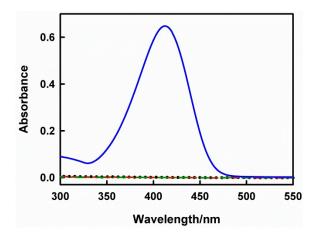
<sup>b</sup>Homi Bhabha National Institute, Training School complex, Anushaktinagar, Mumbai 400 094,


INDIA

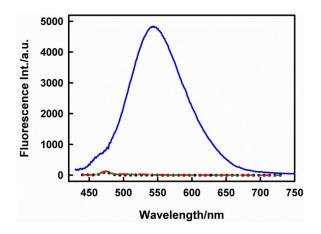
<sup>c</sup>Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan,


Panvel, Mumbai, 410206, INDIA

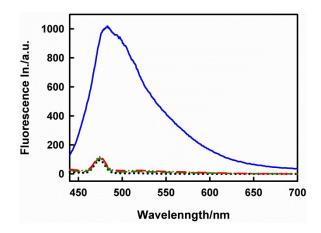



**Figure S1:** Steady-state fluorescence spectra of ThT at varying concentration of (**A**) NaCl and (**B**) NaCH<sub>3</sub>CO<sub>2</sub> (1) 0 M (2) 1.65 M (3) 3.3 M

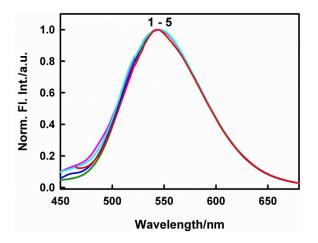



**Figure S2:** Ground-state absorption spectra of ThT at varying concentration of (**A**) NaCl and (**B**) NaCH<sub>3</sub>CO<sub>2</sub>(1) 0 M (2) 1.65 M (3) 3.3 M.




**Figure S3:** Ground-state absorption spectra of ThT-  $NaClO_4$  system (solid blue line), only 0.5 M  $NaClO_4$  in water (green dashed line), only 1 M  $NaClO_4$  in water (red dash dot dot line). The black dotted line represents the baseline of water in absence of ThT or  $NaClO_4$ .




**Figure S4:** Ground-state absorption spectra of ThT- NaCl system (solid blue line), only 0.5 M NaCl in water (green dashed line), only 1 M NaCl in water (red dash dot dot line). The black dotted line represents the baseline of water in absence of ThT or NaCl.



**Figure S5:** Steady-state emission spectra of ThT- NaClO<sub>4</sub> system (solid blue line), only 0.5 M NaClO<sub>4</sub> in water (green dashed line), only 1 M NaClO<sub>4</sub> in water (red dash dot dot line). The black dotted line represents the emission spectrum of water collected in absence of ThT or NaClO<sub>4</sub>.



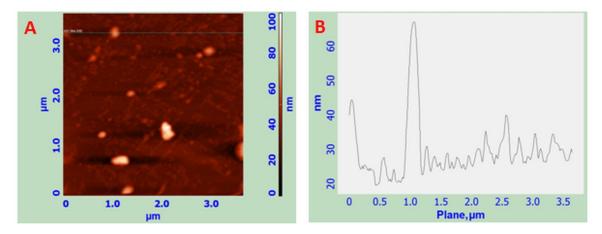
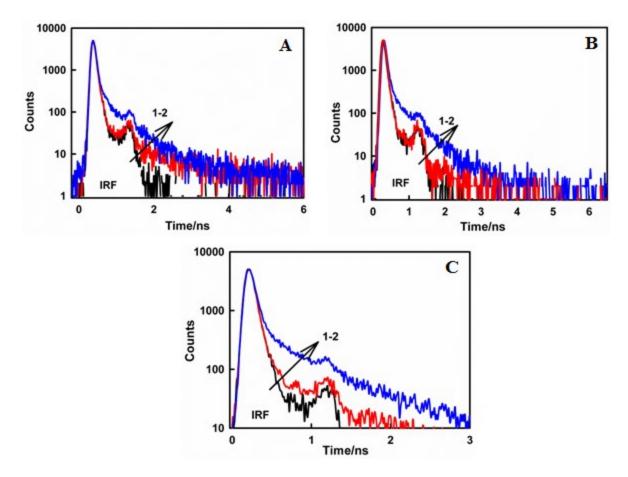
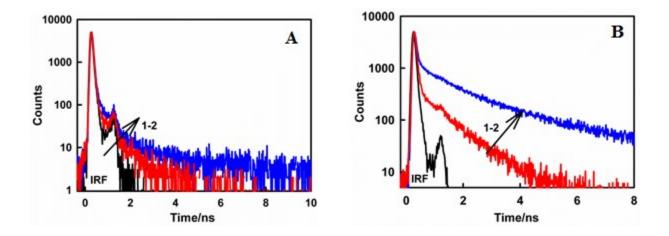
**Figure S6:** Steady-state emission spectra of ThT- NaCl system (solid blue line), only 0.5 M NaCl in water (green dashed line), only 1 M NaCl in water (red dash dot dot line). The black dotted line represents the emission spectrum of water collected in absence of ThT or NaCl.

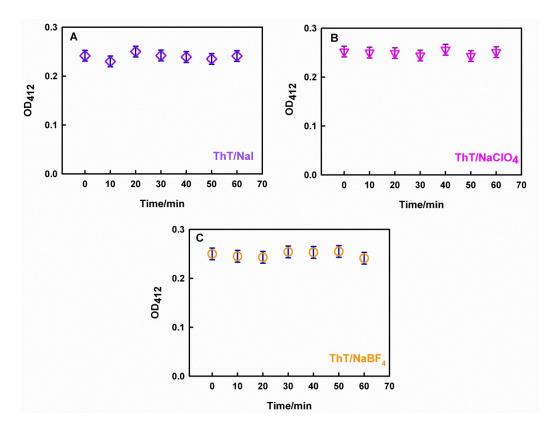


**Figure S7:** Normalized fluorescence spectra of ThT-NaClO<sub>4</sub> system at various excitation wavelengths (1) 390 nm (2) 410 nm (3) 430 nm (4) 450 nm (5) 470 nm.

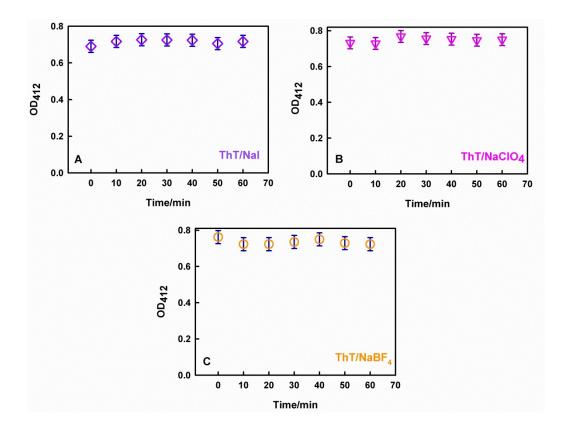


**Figure S8**: (A) Rayleigh's scatter plot of ThT ( $\lambda_{em}$  =450 nm) in the presence of various concentrations of NaClO<sub>4</sub> (in M) (1) 0.23 (2) 0.34 (3) 0.37 (4) 0.41 (5) 0.44 (6) 0.54. The dashed line represents the spectrum of ThT in water. (B) Variation in the Rayleigh scattering intensity in the presence of various concentrations of different salts (1) NaClO<sub>4</sub> (pink triangles) (2) NaBr (red circles) (3) NaCH<sub>3</sub>CO<sub>2</sub> (green squares) (4) NaCl (blue triangles) (5) NaBF<sub>4</sub> (orange circles).



Figure S9: AFM images of ThT-perchlorate system




**Figure S10:** Transient decay trace for ThT in **(A)**:NaCH<sub>3</sub>CO<sub>2</sub> **(B)**:NaCl **(C)**:NaBr (1.0 M ) at emission wavelengths ( $\lambda_{ex} = 410 \text{ nm}$ ): (1) 470 nm (2) 650 nm The solid black line represents instrument response function (IRF).



**Figure S11**: Transient decay traces for ThT in (A) NaI (B) NaBF<sub>4</sub> (1.0 M) at emission wavelengths ( $\lambda_{ex} = 410 \text{ nm}$ ): (1) 470 nm (2) 630 nm The solid black line represents instrument response function (IRF).



**Figure S12:** Variation in the OD of ThT (20  $\mu$ M) at 412 nm as a function of time in the presence of (A) 0.8 M NaI (B) 1.1 M NaClO<sub>4</sub> (C) 4.8 M NaBF<sub>4.</sub>



**Figure S13:** Variation in the OD of ThT (60  $\mu$ M) at 412 nm as a function of time in the presence of (A) 0.8 M NaI (B) 1.1 M NaClO<sub>4</sub> (C) 4.8 M NaBF<sub>4.</sub>

Table T1: Fitting parameters for transient decay trace of ThT-perchlorate system at different temperatures

| Temperature ( <sup>0</sup> C) | a <sub>1</sub> | $\tau_1/ns$ | a <sub>2</sub> | $\tau_2/ns$ | a <sub>3</sub> | $\tau_3/ns$ | $\chi^2$ |
|-------------------------------|----------------|-------------|----------------|-------------|----------------|-------------|----------|
|                               |                |             |                |             |                |             |          |
| 20                            | 0.138          | 0.028       | 0.368          | 0.65        | 0.494          | 1.40        | 1.08     |
|                               |                |             |                |             |                |             |          |
| 25                            | 0.156          | 0.028       | 0.348          | 0.66        | 0.496          | 1.39        | 1.11     |
|                               |                |             |                |             |                |             |          |
| 30                            | 0.191          | 0.027       | 0.418          | 0.72        | 0.391          | 1.42        | 1.09     |
|                               |                |             |                |             |                |             |          |
| 35                            | 0.153          | 0.029       | 0.474          | 0.74        | 0.373          | 1.42        | 1.10     |
|                               |                |             |                |             |                |             |          |
| 40                            | 0.214          | 0.027       | 0.494          | 0.81        | 0.292          | 1.44        | 1.06     |
|                               |                |             |                |             |                |             |          |

| 45 | 0.305 | 0.028 | 0.452 | 0.84 | 0.243 | 1.42 | 1.05 |
|----|-------|-------|-------|------|-------|------|------|
| 50 | 0.375 | 0.030 | 0.401 | 0.87 | 0.224 | 1.42 | 1.04 |
| 55 | 0.475 | 0.027 | 0.363 | 0.91 | 0.162 | 1.42 | 1.06 |