Supporting Information

A novel shift in the glass transition temperature of polymer nanocomposites: A molecular dynamics simulation study

Raja Azhar Ashraaf Khan,^a Xian Chen,^a Hang-Kai Qi,^a Jian-Hua Huang,^b Meng-Bo Luo^{*a} ^a Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China

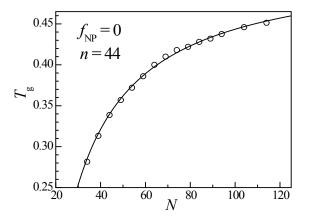
^b Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Corresponding Author

* Meng-Bo Luo (luomengbo@zju.edu.cn)

1. Diffusion of NP in polymer solution

We have simulated a single NP diffusion in polymer solution. In the system of size $40 \times 40 \times 40$, we put 44 polymer chains of length 64. Here size of NP is $\sigma_{NP} = 1$. The density of polymer monomers is about 4.4%. The interactions between NP and polymer and between polymer and polymer are purely repulsive for simplification. NVT simulations are performed at temperature T = 1. The results of mean square displacement (MSD) of NP at different time (*t*) is present in **Figure S1** for NP of mass 1 and 100. We find the diffusion of NPs decreases with increasing NP's mass.


Figure S1. Plot of the mean square displacement of the NPs as a function of time for single NP in polymer solution at temperature T = 1.

2. Dependence of $T_{\rm g}$ on polymer chain length

We have checked the dependence of T_g on the polymer chain length for the pure polymer system. The result of the influence of polymer chain length on T_g is plotted in **Figure S2**. During the simulations, the number of polymer chains, n = 44, is fixed while the length of the polymer chain, N, is varied from 34 to 114. We find T_g increases with polymer length, in agreement with experimental results.¹ The polymer length dependence of T_g can be well fitted to the empirical Fox-Flory equation²

$$T_{\rm g}(N) = T_{\rm g}^{\infty} - \frac{C}{N} \quad . \tag{1}$$

We estimate $T_g^{\infty} = 0.525$ for infinitely long polymer chain.

Figure S2. Simulation results for the variation of T_g with chain length *N* for the pure polymer system ($f_{NP} = 0$) with the number of polymer chains n = 44. The solid line is the best fit by the

empirical Fox-Flory equation (Eq. 1).

References:

[1] J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu and E. Rossler, *Macromolecules*, 2008, 41, 9335–9344.

[2] J.-L. Barrat, J. Baschnagel and A. Lyulin, Soft Matt., 2010, 6, 3430–3446.