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Ground state equilibrium coordinate

In the adiabatic approximation, the Hamiltonian for the single molecule is written neglecting

the vibrational kinetic energy as follows:
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The Hellmann-Feynman theorem allows to calculate the ()-derivative of the ground state

energy as the expectation value of the H(Q) derivatives:
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where (g|plg) = p. The equilibrium coordinate @ is calculated imposing the vanishing of

the energy derivative with respect to Q:

Rotating the basis

Two new operators are defined as linear combinations of Pauli operators ¢, ., whose projec-

tions are defined by the parameter p:
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S.i=(1=2p)G.; +2vp(1 — p)oas (4)

where ¢ runs on the molecular sites. The above operators are then expressed in terms of

creation and annihilation operators:

S.i= (bl + 1) (5)

The operator b! creates an excitation on site i, by turning the molecule from state |g) to |e),

while b; destroys the excitation. These operators obey a Paulion algebra:
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0, if i £ j.

Applying the Lang-Firsov transformation to the vibrational states (see main text) and
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rotating the electronic basis as described above, the aggregate Hamitonian reads:

Ho= ) i [2(1 —2p)(20 + Mp — eup) + 44/ p(1 — p)T]
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We impose the vanishing of the second term in Eq. 7 as follows:

1—2p
2vp(l=p)z(p) =(1 =2p)7 =0 —= 2(p) = —F—=7 (8)
2y/p(L = p)
Finally we rewrite the term in the square parenthesis in the first line of Eq. 7 as follows:
2(1 =2p)z(p) +4/p(1 —p e (9)

(1—)

Recalling Eq.10 (main text) we finally obtain the Hamiltonian in Eq. 6 (main text).
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Convergence in medium and strong coupling
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Figure S1: The same results as in Fig. 6, main text (N = 6), accounting for different value
of N,.
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Figure S2: The same results as in Fig. 7, main text (N = 6), accounting for different value
of N..
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