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Ground state equilibrium coordinate

In the adiabatic approximation, the Hamiltonian for the single molecule is written neglecting

the vibrational kinetic energy as follows:

Ĥ(Q) = −τ σ̂ + (2z0 − g
√

2ωv

h̄
Q)ρ̂+

1

2
ω2
vQ

2 (1)

The Hellmann-Feynman theorem allows to calculate the Q-derivative of the ground state

energy as the expectation value of the Ĥ(Q) derivatives:

δEg(Q,P )

δQ
= −g

√
2ωv

h̄
ρ+ ω2

vQ (2)
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where 〈g|ρ̂|g〉 = ρ. The equilibrium coordinate Q̄ is calculated imposing the vanishing of

the energy derivative with respect to Q:

Q̄ =

√
2ωv

h̄

g

ω2
v

ρ (3)

Rotating the basis

Two new operators are defined as linear combinations of Pauli operators σ̂x,z, whose projec-

tions are defined by the parameter ρ:

Ŝx,i = −2
√
ρ(1− ρ)σ̂z,i + (1− 2ρ)σ̂x,i

Ŝz,i = (1− 2ρ)σ̂z,i + 2
√
ρ(1− ρ)σ̂x,i (4)

where i runs on the molecular sites. The above operators are then expressed in terms of

creation and annihilation operators:

Ŝx,i = 1− 2b̂†i b̂i

Ŝz,i = (b̂†i + b̂i) (5)

The operator b̂†i creates an excitation on site i, by turning the molecule from state |g〉 to |e〉,

while b̂i destroys the excitation. These operators obey a Paulion algebra:

[b̂i, b̂
†
j] =


1− 2b̂†j b̂i, if i = j

0, if i 6= j.

(6)

Applying the Lang-Firsov transformation to the vibrational states (see main text) and
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rotating the electronic basis as described above, the aggregate Hamitonian reads:

H =
∑
i

n̂i

[
2(1− 2ρ)(z0 +Mρ− εvρ) + 4

√
ρ(1− ρ)τ

]
+

∑
i

(b̂†i + b̂i)
[
2
√
ρ(1− ρ)(z0 +Mρ− εvρ)− (1− 2ρ)τ

]
+ h̄ωv

∑
i

(
ˆ̃a†i ˆ̃ai +

1

2

)

− g

[
(1− 2ρ)

∑
i

n̂i(ˆ̃a
†
i + ˆ̃ai) +

√
ρ(1− ρ)

∑
i

(b̂†i + b̂i)(ˆ̃a
†
i + ˆ̃ai)

]
+

∑
i>j

Vijρ(1− ρ)
[
(b̂†i b̂j + b̂†j b̂i) + (b̂†i b̂

†
j + b̂j b̂i)

]
+ (1− 2ρ)2

∑
i>j

Vijn̂in̂j + 2
√
ρ(1− ρ)(1− 2ρ)

∑
i>j

n̂i(b̂
†
j + b̂j) (7)

We impose the vanishing of the second term in Eq. 7 as follows:

2
√
ρ(1− ρ)z(ρ)− (1− 2ρ)τ = 0 → z(ρ) =

1− 2ρ

2
√
ρ(1− ρ)

τ (8)

Finally we rewrite the term in the square parenthesis in the first line of Eq. 7 as follows:

2(1− 2ρ)z(ρ) + 4
√
ρ(1− ρ)τ =

τ√
ρ(1− ρ)

(9)

Recalling Eq.10 (main text) we finally obtain the Hamiltonian in Eq. 6 (main text).
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Convergence in medium and strong coupling

Figure S1: The same results as in Fig. 6, main text (N = 6), accounting for different value
of Ne.
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Figure S2: The same results as in Fig. 7, main text (N = 6), accounting for different value
of Ne.
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