SUPPLEMENTARY INFORMATION

The Role of the Shell in Core-Shell-Structured La-Doped NaTaO₃ Photocatalysts

Hanggara Sudrajat,^{*ab} Mitsunori Kitta,^c Ryota Ito,^d Tomoko Yoshida,^e Ryuzi Katoh,^f Bunsho Ohtani,^g Nobuyuki Ichikuni,^h and Hiroshi Onishi^a

^aDepartment of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan ^bDepartment of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jember 68121, Indonesia. Email: <u>hanggara@unei.ac.id</u> ^cResearch Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, Osaka 563-8577, Japan ^dDepartment of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan ^eAdvanced Research Institute for Natural Science and Technology, Osaka City University, Osaka 558-8585, Japan ^fDepartment of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Fukushima 963-8642, Japan ^gInstitute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan ^hDepartment of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan

■ CHARACTERIZATION

The crystallographic phase and bulk composition of the photocatalysts were checked with an X-ray diffractometer (Rigaku, SmartLab) and energy dispersive X-ray fluorescence spectrometer (Shimadzu, EDX-720), respectively. Light absorption spectra of the photocatalysts were observed with an ultraviolet-visible diffuse reflection spectrometer (Jasco, V-570) equipped with an integration sphere. Surface composition was quantified by an X-ray photoelectron spectrometer (ULVAC-PHI, PHI X-tool). The textural properties were examined using N₂ adsorption-desorption isotherms at liquid nitrogen temperature of 77 K by an adsorption instrument (Belsorp 28SA, Bel). The size and shape of the photocatalyst

particles were observed with a scanning electron microscope (Jeol, JSM-7100F). Raman scattering was observed in air using a Raman spectrometer (Jasco, NRS-7100). Energy dispersive X-ray mapping was done with a transmission electron microscope (FEI, TITAN³ G2 60–300) equipped with a Si drift detector (FEI, super-X) and imaging software (Bruker, Esprit).

Light-induced infrared absorption spectra to evaluate the steady-state population of photoexcited electrons that had not yet recombined were recorded with a Fourier transform spectrometer (Jasco, FT/IR610). Details of the experimental setup are available elsewhere.¹

Time-resolved microwave conductivity measurements were performed in a laboratorymade apparatus. The fourth harmonic (266 nm) of a Lotis TII LS-2137 Nd³⁺:YAG laser was used for UV excitation at an intensity of 0.25 mJ cm⁻². Details of the experimental setup are available elsewhere.²⁻³

Reversed double-beam photoacoustic spectroscopy measurements were carried out in laboratory-made apparatuses. A stainless-steel sample holder was filled with a photocatalyst powder and set in a photoacoustic cell equipped with a MEMS (microelectromechanical system) microphone and a quartz window on the upper side. The cell was filled with methanol-saturated nitrogen. Using a UV quartz combiner light guide, the sample was simultaneously irradiated with two light beams, a continuous wavelength-scanned excitation beam and a modulated fixed wavelength detection beam. The recorded spectrum was differentiated from the lower-energy side to obtain an energy-resolved distribution of electron traps pattern. Details of the experimental setup are available elsewhere.⁴⁻⁵

X-ray absorption fine structure spectroscopy was employed to investigate the local environment around La cations. XAFS spectra were recorded at the La *K*-edge using the AR-NW10A beamline at the Photon Factory, Tsukuba, Japan in transmission mode with a Si(311) double crystal monochromator. The ATHENA and ARTEMIS package was used to process the recorded data. XAFS spectra were transformed using the Hanning window with k^3 -weighting and a dk of 2 prior to single-shell curve fitting. Four parameters were refined: *L* (bond length), *N* (coordination number), d*E* (threshold energy difference), and DW (Debye–Waller factor).

OVERALL WATER SPLITTING ACTIVITY

Photocatalytic reactions for H_2 evolution were performed in a closed-gas circulation system. The photocatalyst powder (0.1 g) was dispersed in a reaction cell filled with distilled water (10 mL). The reaction cell was irradiated with a 300 W xenon lamp at an average intensity of 22 mW cm⁻² at 254 ± 10 nm. The amounts of evolved gases were determined using gas chromatography with a thermal conductivity detector (GC-8A, Shimadzu). Prior to the photocatalytic reaction, the photocatalyst powder was loaded with NiO as the cocatalyst using the impregnation method.⁶ Briefly, an appropriate amount of Ni(NO₃)₂·6H₂O (98.0%, Wako) was mixed with photocatalyst powder (1 g) in a porcelain crucible containing a small amount of water (4 mL) to achieve a NiO loading amount of 2 wt%. The obtained suspension was stirred using a glass rod under heat treatment at approximately 80 °C to evaporate water. The dried powder was calcined at 270 °C for 1 h in an air atmosphere.

■ FIGURES AND TABLE

Figure S1. Diffraction patterns of La-NTO etched for (a) 0, (b) 30, (c) 60 and (d) 120 min, and (e) unetched NTO in the range of (A) 10-70° and (B) 32-33° around the main peak. The diffraction pattern of Na₂O (JCPDS 03-1074) is also shown in Panel A for reference.

Figure S2. (A) TEM and (B) HAADF images of La-NTO etched for 30 min.

Figure S3. Photoelectron spectra of La-NTO etched for (a) 0, (b) 30, (c) 60, and (d) 120 min in the (A) Ta 4f, (B) La $3d_{5/2}$, and (C) F 1s regions.

Figure S4. Low-magnification HAADF images of La-NTO etched for 30 min with element maps.

Figure S5. HAADF images of unetched La-NTO with element maps.

······································					
Etching time / min	Shell	L/Å	Ν	d <i>E</i> /eV	DW/Ų
0	La-O	2.52	9.4	-1.1	0.017
	La-Ta	3.46	8.1	0.8	0.006
30	La-O	2.56	9.1	-2.5	0.017
	La-Ta	3.48	8.2	-3.1	0.008
60	La-O	2.55	8.6	2.7	0.018
	La-Ta	3.47	7.7	-1.6	0.007
120	La-O	2.57	8.9	-1.5	0.019
	La-Ta	3.49	7.2	3.2	0.009

Table S1 XAFS curve fitting results.

L is the bond length; *N* is the coordination number; d*E* is the threshold energy difference; and DW is the Debye–Waller factor.

Figure S6. Photoelectron spectra of NTO etched for (a) 0 and (b) 120 min in the F 1s regions.

Figure S7. Brunauer-Emmett-Teller (BET) plots of La-NTO etched for (A) 0 and (B) 30 min. The specific surface area of sample A and sample B are 5.7 and 6.6 m^2/g , respectively.

References

- Sudrajat, H.; Kitta, M.; Ito, R.; Nagai, S.; Yoshida, T.; Katoh, R.; Ohtani, B.; Ichikuni, N.; Onishi, H., Water-Splitting Activity of La-Doped NaTaO₃ Photocatalysts Sensitive to Spatial Distribution of Dopants. *The Journal of Physical Chemistry C* 2020, 124 (28), 15285-15294.
- Katoh, R.; Furube, A.; Yamanaka, K.-i.; Morikawa, T., Charge separation and trapping in Ndoped TiO₂ photocatalysts: A time-resolved microwave conductivity study. *The Journal of Physical Chemistry Letters* **2010**, *1* (22), 3261-3265.
- Nakajima, S.; Katoh, R., Time-resolved microwave conductivity study of charge carrier dynamics in commercially available TiO₂ photocatalysts. *Journal of Materials Chemistry A* 2015, 3 (30), 15466-15472.

- 4. Nitta, A.; Takase, M.; Takashima, M.; Murakami, N.; Ohtani, B., A fingerprint of metal-oxide powders: energy-resolved distribution of electron traps. *Chemical Communications* **2016**, *52* (81), 12096-12099.
- 5. Nitta, A.; Takashima, M.; Murakami, N.; Takase, M.; Ohtani, B., Reversed double-beam photoacoustic spectroscopy of metal-oxide powders for estimation of their energy-resolved distribution of electron traps and electronic-band structure. *Electrochimica Acta* **2018**, *264*, 83-90.
- 6. Kato, H.; Asakura, K.; Kudo, A., Highly efficient water splitting into H₂ and O₂ over lanthanum-doped NaTaO₃ photocatalysts with high crystallinity and surface nanostructure. *Journal of the American Chemical Society* **2003**, *125* (10), 3082-3089.