Supplementary Information

Pulse Sequence and Sample Formulation Optimization for Dipolar Order Mediated ¹H→¹³C Cross-Polarization

Stuart J. Elliott^{a†}, Olivier Cala^a, Quentin Stern^a, Samuel F. Cousin^{a,b}, Dmitry Eshchenko^c, Roberto Melzi^d, James G. Kempf^e and Sami Jannin^a

^a Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - FRE 2034 Université de Lyon / CNRS / Université Claude Bernard Lyon 1 / ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
^b Institut de Chimie Redicelaire UMP 7273 Saint Járôme Campus Av. Ess Normandia

^b Institut de Chimie Radicalaire - UMR 7273, Saint-Jérôme Campus, Av. Esc. Normandie Niemen, Aix-Marseille Université / CNRS, 13397 Marseille, Cedex 20, France ^c Bruker Switzerland, Industriesstrasse 26, 8117 Fällanden, Switzerland

^d Bruker Italia Srl, Viale Vincenzo Lancetti, 43, 20158 Milan, Italy

^e Bruker Biospin, 15 Fortune Drive Billerica, Massachusetts, United States of America

[†] stuart-james.elliott@univ-lyon1.fr

Table of Contents

1. Cross-polarization	3
2. Build-up rate constants	4
3. References	5

1. Cross-polarization

Figure S1: Schematic representation of the cross-polarization (CP) *rf*-pulse sequence adapted to *d*DNP experiments used for transferring ¹H polarization to ¹³C heteronuclei. The experiments used the following parameters, chosen to maximize ¹H-¹³C population conversion: n = 50; $t_G = 0.5 \text{ s}$; $\omega_{AHP}^H/2\pi = 27.8 \text{ kHz}$; $t_{AHP}^H = 175 \mu \text{s}$. AHP = adiabatic half-passage. AHP sweep width = 100 kHz. The $\pi/2$ crusher *rf*-pulses use an empirically optimized thirteen-step phase cycle to remove residual magnetization at the beginning of each experiment: $\{0, \pi/18, 5\pi/18, \pi/2, 4\pi/9, 5\pi/18, 8\pi/9, \pi, 10\pi/9, 13\pi/9, \pi/18, 5\pi/3, 35\pi/18\}$. The resonance offset was placed at the centre of the ¹H and ¹³C NMR peaks. The non-constant amplitude ¹³C CP *rf*-pulse has a linearly increasing amplitude between 50% and 100%.

Figure S1 shows the typical cross-polarization (CP) *rf*-pulse sequence configured for use in *d*DNP experiments to transfer polarization from ¹H spins to insensitive ¹³C heteronuclei [1-3].

		Molecules		
		Ι	II	III
Quantity	Units	°≡c∕ ₀№a	H ₁ ^{ar} c ONa	
t _{CP}	ms	6.0	7.5	9.0
$\omega_{ ext{CP}}^{ ext{H}}/2\pi$	kHz	18.3	18.3	15.3
P_{dCP}^{H}	W	5.0	5.0	3.5
E_{dCP}^{H}	mJ	24.0	37.5	31.5
$\omega_{ ext{CP}}^{ ext{C}}/2\pi$	kHz	25.8	25.8	24.0
P_{dCP}^{C}	W	150	150	130
E_{dCP}^{C}	J	0.9	1.125	1.17
$E_{dCP}^{H} + E_{dCP}^{C}$	J	0.924	1.163	1.202
$P_{\rm CP}(^{13}{\rm C},5{\rm s})$	%	3.1	3.7	2.8
$P_{\rm CP}(^{13}{\rm C},600{\rm s})$	%	37.3	42.9	-

Table S1: CP *rf*-pulse sequence parameters, peak *rf*-pulse powers P_{CP} , peak *rf*-pulse energies E_{CP} and ¹³C nuclear spin polarization levels $P_{CP}(^{13}C)$ for the molecular derivatives used in this work.

Table S1 shows the CP *rf*-pulse sequence parameters, peak *rf*-pulse powers P_{CP} , peak *rf*-pulse energies E_{CP} and ¹³C nuclear spin polarization levels $P_{CP}(^{13}C)$ for the molecular candidates employed in this study. As detailed in the main text, ¹³C polarization levels were measured after 5 or 600 s of direct ¹H DNP at 1.2 K prior to a single step transfer of polarization to the ¹³C spin bath.

2. Build-up rate constants

Figure S2: Experimental ¹³C NMR signal intensities of samples **I-III** as a function of the ¹³C dCP *rf*-pulse duration t_{dCP}^{C} acquired at 7.05 T (¹H nuclear Larmor frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point. Coloured traces: Black: Sample **I**; Blue: Sample **II**; and Grey: Sample **III**. All signal amplitudes were normalized to the final data point. Stretched exponential decay function (solid lines): A(1-exp{-($R'_{dCP}t)^{\beta}$).

The presumed conversion of ¹H-¹H dipolar order to ¹³C transverse magnetization in samples I-III was tracked as a function of the ¹³C *d*CP *rf*-pulse duration t_{dCP}^{C} by using the *d*CP *rf*-pulse sequence shown in Figure 1 of the main text. Experimental results demonstrating the generation of ¹³C NMR signal intensity are shown in Figure S2. The integrals plotted were acquired by using the *d*CP *rf*-pulse sequence parameters given in Table 2 of the main text for incremented durations of t_{dCP}^{C} . At a ¹³C *d*CP *rf*-pulse duration of $t_{dCP}^{C} = 60$ ms, all samples have achieved a near optimal conversion of ¹H-¹H dipolar order to ¹³C transverse magnetization, *i.e.* the experimental curves display a plateauing trend. Experiments were stopped at such ¹³C *d*CP *rf*-pulse duration time constant for sample III, compared with sample I, may explain the reduced ¹³C *d*CP *rf*-pulse build-up time rate R_{dCP}^{C} for this choice of molecular candidate (see the main text for more details).

3. References

[1] S. J. Elliott, S. F. Cousin, Q. Chappuis, O. Cala, M. Ceillier, A. Bornet and S. Jannin, *Magn. Reson.*, **2020**, 1, 89-96.

[2] S. R. Hartmann and E. L. Hahn, Phys. Rev., 1962, 128, 204-205.

[3] A. Pines, M. Gibby and J. Waugh, Chem. Phys. Lett., 1972, 15, 373-376.