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Calculated details of carrier mobility

The carrier mobility has been calculated in this work by the deformation potential (DP) 

theory via the following two formulas:
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where e, ℏ and KB are electron charge, the reduced Planck constant and Boltzmann 

constant, T means the temperature, which is set to be 300K. Cx and Edx represent the 

elastic modulus and deformation potential constant along the x direction (say, the 

armchair direction), while Cy and Edy is those of along the y direction (say, the zigzag 

direction), respectively. C can be obtained from , where E is the total 
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energy of the system under uniaxial strain and S0 is the area of the system. Here, we 

define the uniaxial stain as , where  and 𝐸= (𝐿𝑠𝑡𝑟𝑎𝑖𝑛 ‒ 𝐿𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛) ∕ 𝐿𝑠𝑡𝑟𝑎𝑖𝑛 𝐿𝑠𝑡𝑟𝑎𝑖𝑛

 represent the lattice constants under strain and no strain respectively. Ed is 𝐿𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛

represented by , and Eedge is the energy change of band edge under 
𝐸𝑑=

∂𝐸𝑒𝑑𝑔𝑒

∂ℇ

uniaxial strain. At the meantime, the effective mass m* is calculated from the 

following relations:
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where k is wave vector and E(k) represents the energy that corresponding to k. 

FIGURES:

Fig. S1. The crystal structures of single-layer MoSSe and g-SiC. The blue, pink 

yellow, green and black balls represent the Mo, S, Se, Si and C atoms, respectively.



Fig. S2. The interlayer binding energy per unit cell as a function of interlayer distance 
for AC I-stacking. 

Fig. S3. (a) The phonon dispersion curve of MoSSe/g-SiC vdWH. (b) Total energy 
fluctuations during AIMD simulations of the MoSSe/g-SiC vdWH at 300K and 500K, 
where the insets show snapshots of the structures after 5 ps.

Fig. S4. The electrostatic potential of the single-layer (a) MoSSe and (b) g-SiC.



Fig. S5. (a) Top view of the atomic structure of the MoSSe/g-SiC vdWH with a 
rectangular supercell. The red dashed line indicates the unit cell with the zigzag and 
armchair directions defined. (b) Band structure of its rectangular cell calculated by the 
HSE06 functional.

Fig. S6. The total energy (a)~(b) and energy shift of CBM and VBM (c)~(d) with 
respect to the lattice stretch and compression along the armchair and zigzag directions 
of the MoSSe/g-SiC vdWH, respectively.



Fig. S7. (a) The band structures and (b) schematics of band alignment for MoSSe/g-
SiC vdWH under various vertical strains.

Table S1 The calculated carrier mobilities of the present MoSSe/g-SiC vdWH and the previously reported 

heterostructure using the formula (4).

Structures
Carrier 

type

m∗arm
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Czig

(N/m)

Ed
arm
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Ed
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(eV)

arm𝜇

(cm2/ V.s )

zig𝜇

(cm2/ V.s )

electron 0.60 0.60 182.63 183.30 3.94 3.68 0.46×103 0.53×103

MoSSe/g-SiC
hole 0.57 0.57 182.63 183.30 2.70 2.70 0.10×104 0.11×104

electron 0.22 1.35 47.70 135.86 1.27 4.75 5.09×103 0.17×103

BP/SnSe
hole 0.25 0.26 47.70 135.86 3.25 5.61 0.75×103 1.41×103

electron 0.64 0.64 226.92 227.03 5.54 4.53 0.38×103 0.58×103

MoSSe/AlN
hole 3.91 3.28 226.92 227.03 1.11 1.11 0.28×103 0.33×103


