Supporting Information for

Reactions of Criegee Intermediates with Acrolein: Kinetics and Atmospheric

Implication

Xiaohu Zhou ${ }^{\text {abb,c }}$, Yang Chen ${ }^{\text {c.d,e }}$, Yiqiang Liu ${ }^{\text {c,f }}$, Xinyong Li ${ }^{\text {a,* }}$, Wenrui Dong ${ }^{\mathrm{c}, *}$ and Xueming Yang ${ }^{\text {c,g,* }}$
a. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
b. Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
c. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
d. Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
e. University of Chinese Academy of Sciences, Beijing, 100049, China
f. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
g. Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China

AUTHOR INFORMATION

Corresponding Author

* E-mail: wrdong@dicp.ac.cn
* E-mail: xmyang@dicp.ac.cn
* E-mail: xyli@dlut.edu.cn
Table of contents:
I. Kinetic model for the syn- $\mathrm{CH}_{3} \mathrm{CHOO}+\mathrm{CH}_{2}=\mathrm{CHCHO}$ reaction S3
II. Summary of experimental conditions (Table S1-S2) S4
III. Error analysis (Table S3-S4) S6
IV. Sensitivity analysis of the fit on A_{1} and k_{14}^{\prime} (Table S5-S7) S9
Reference S11

I. Kinetic model for the syn- $\mathrm{CH}_{3} \mathbf{C H O O}+\mathrm{CH}_{2}=\mathbf{C H C H O}$ reaction

The formation of $\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}$ includes reactions listed below:

$$
\begin{align*}
\mathrm{CH}_{3} \mathrm{CHI}_{2}+h \nu & \xrightarrow{k_{8}} \tag{R8}\\
\mathrm{CH}_{3} \mathrm{CHI}+ & \mathrm{CH}_{3} \mathrm{CHI}+\mathrm{I} \tag{R9a}\\
\mathrm{O}_{2} & \text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}+\mathrm{I} \tag{R9b}\\
& \xrightarrow{k_{9 b}} \text { anti- } \mathrm{CH}_{3} \mathrm{CHOO}+\mathrm{I} \\
& \xrightarrow{k_{9 c}} \text { other products } \tag{R9c}
\end{align*}
$$

The consumption of ${ }^{\mathrm{Syn}}-\mathrm{CH}_{3} \mathrm{CHOO}$ results from the following reactions:

$$
\begin{align*}
& \text { syn }-\mathrm{CH}_{3} \mathrm{CHOO} \xrightarrow{k_{10 a}} \mathrm{OH} \tag{R10a}\\
& \\
& \xrightarrow{k_{10 b}} \text { other products } \tag{R10b}\\
& \text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}+\mathrm{CH}_{2}=\mathrm{CHCHO} \xrightarrow{k_{11}} \text { products } \tag{R11}\\
& \text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}+\mathrm{X}^{k_{12}} \text { products } \tag{R12}\\
& \text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}+\text { syn }-\mathrm{CH}_{3} \mathrm{CHOO} \xrightarrow{k_{13}} \text { products } \tag{R13}
\end{align*}
$$

Reaction (R7) describes the consumption of OH:

$$
\begin{equation*}
\mathrm{OH}+\mathrm{Y} \xrightarrow{k_{14}} \text { products } \tag{R14}
\end{equation*}
$$

Where X in reaction (R12) denotes the species that react with syn $-\mathrm{CH}_{3} \mathrm{CHOO}$, such as I and $\mathrm{CH}_{3} \mathrm{CHI}_{2}$. Y in reaction (R14) denotes the species that consume the OH , e.g., $\mathrm{IO}, \mathrm{CH}_{3} \mathrm{CHI}_{2}, \mathrm{CH}_{3} \mathrm{CHO}$, and $\mathrm{CH}_{2}=\mathrm{CHCHO}$. We neglected the cross-self-reaction of syn- $\mathrm{CH}_{3} \mathrm{CHOO}$ with anti- $\mathrm{CH}_{3} \mathrm{CHOO}$ as it is hardly discernible under similar experimental condition. ${ }^{1}$

The $\mathrm{OH}\left(v^{\prime \prime}=0\right)$ decay profiles were fitted with the expression (II) (for details see our previous publication) ${ }^{2}$:

$$
\begin{equation*}
S_{\mathrm{OH}}=\frac{\mathrm{A}_{0}\left(k_{10}+k_{11}^{\prime}+k_{12}^{\prime}\right)}{\left(k_{10}+k_{11}^{\prime}+k_{12}^{\prime}\right) \mathrm{e}^{\left(k_{10}+k_{11}^{\prime}+k_{k}^{\prime}\right) \mathrm{t}}+2 k_{13}\left[\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0}\left(\mathrm{e}^{\left(k_{10}+k_{11}^{\prime}+k_{2}^{\prime}\right) t}-1\right)}-\mathrm{A}_{1} \mathrm{e}^{-k_{14 \mathrm{t}}^{\prime}} \tag{SI}
\end{equation*}
$$

where $\mathrm{A}_{0}=\gamma \frac{k_{10 \mathrm{a}}\left[s y n-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0}}{k_{14}^{\prime}-\left(k_{10}+k_{11}^{\prime}+k_{12}^{\prime}\right)}, \mathrm{A}_{1}=\gamma\left(\frac{k_{10 \mathrm{a}}\left[s y n-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0}}{k_{14}^{\prime}-\left(k_{10}+k_{11}^{\prime}+k_{12}^{\prime}\right)}-[\mathrm{OH}]_{0}\right)$.
In expression (II), $k_{11}^{\prime}=k_{11}\left[\mathrm{CH}_{2}=\mathrm{CHCHO}\right] ; k_{12}^{\prime}=k_{12}[\mathrm{X}] ; k^{13}$ was fixed to a reported value of $1.6 \times 10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1},{ }^{1} k_{14}^{\prime}=k_{14}[Y]$. The initial concentration of $\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO},\left[\text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0}$, was fixed to
a calculated value during the fitting. $\left.{ }^{[\mathrm{OH}}\right]_{0 \text { is }}$ the concentration of OH from the decomposition of energized $\mathrm{CH}_{3} \mathrm{CHOO} ; \gamma$ is the OH detection efficiency.

II. Summary of experimental conditions

Table S1. Summary of the experimental conditions for $\mathrm{CH}_{2} \mathrm{OO}$ reaction with $\mathrm{CH}_{2}=\mathrm{CHCHO}$ at different temperatures. The total pressure is $10 \mathrm{Torr} ;\left[\mathrm{CH}_{2} \mathrm{I}_{2}\right] \sim(1.54 \pm 0.18) \times 10^{14} \mathrm{~cm}^{-3} ;\left[\mathrm{CH}_{2} \mathrm{OO}\right] \sim(3.59 \pm 0.86)$ $\times 10^{12} \mathrm{~cm}^{-3} ;\left[\mathrm{O}_{2}\right]=2.50 \times 10^{16} \mathrm{~cm}^{-3} ; \mathrm{I}_{248} \sim 15 \mathrm{~mJ} \mathrm{~cm}^{-2}$.

Exp \#	T $/ \mathrm{K}$	$k_{3}+k_{6}^{\prime}$ $/ \mathrm{s}^{-1}$	k_{5} $/ 10^{-12} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$
$1-1$	281.3	451	1.80 ± 0.23
$1-2$	281.5	480	1.80 ± 0.22
$1-3$	281.2	514	1.87 ± 0.23
$1-4$	281.3	422	1.85 ± 0.23
Average	298.4	427	$\mathbf{1 . 8 3} \pm \mathbf{0 . 2 3}$
$1-5$	298.3	584	1.61 ± 0.20
$1-6$	298.5	673	1.64 ± 0.20
$1-7$	298.4	504	1.69 ± 0.21
$1-8$	308.5	520	$\mathbf{1 . 6 4} \pm \mathbf{0 . 2 0}$
Average	308.1	504	1.35 ± 0.17
$1-9$	308.4	476	1.45 ± 0.17
$1-10$	308.2	445	1.39 ± 0.18
$1-11$			1.47 ± 0.18
$1-12$	318.1	405	$\mathbf{1 . 4 2} \pm \mathbf{0 . 1 7}$
Average	318.5	413	1.25 ± 0.15
$1-13$	318.2	599	1.36 ± 0.17
$1-14$	318.1	467	1.35 ± 0.17
$1-15$			$\mathbf{1 . 3 2} \pm \mathbf{0 . 1 6}$
$1-16$			
Average			

Table S2. Summary of the experimental conditions for syn $-\mathrm{CH}_{3} \mathrm{CHOO}$ reaction with $\mathrm{CH}_{2}=\mathrm{CHCHO}$ at different temperatures. The total pressure is 15 Torr; $\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right] \sim(1.30 \pm 0.16) \times 10^{14} \mathrm{~cm}^{-3} ;[$ syn$\left.\mathrm{CH}_{3} \mathrm{CHOO}\right] \sim(2.44 \pm 0.75) \times 10^{12} \mathrm{~cm}^{-3} ;\left[\mathrm{O}_{2}\right]=2.50 \times 10^{16} \mathrm{~cm}^{-3} ; \mathrm{I}_{248} \sim 15 \mathrm{~mJ} \mathrm{~cm}^{-2}$.

Exp \#	T K	$k_{10}+k_{12}^{\prime}$ $/ \mathrm{s}^{-1}$	k_{11} $/ 10^{-13} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$
$2-1$	282.9	456	1.38 ± 0.23
$2-2$	282.8	439	1.29 ± 0.19
$2-3$	282.8	424	1.33 ± 0.23
$2-4$	282.7	353	1.42 ± 0.22
Average			$\mathbf{1 . 3 6} \pm \mathbf{0 . 2 1}$
$2-5$	298.5	296	1.33 ± 0.19
$2-6$	298.4	537	1.22 ± 0.23
$2-7$	298.3	313	1.25 ± 0.23
$2-8$	298.3	453	1.19 ± 0.19
$2-9$	298.1	257	1.24 ± 0.17
Average	308.3	303	$\mathbf{1 . 2 5} \pm \mathbf{0 . 2 1}$
$2-10$	308.7	324	1.18 ± 0.22
$2-11$	308.6	301	1.04 ± 0.21
$2-12$	308.2		1.19 ± 0.18
$2-13$	318.5	283	$\mathbf{1 . 1 4} \pm \mathbf{0 . 1 9}$
Average	318.3	374	1.03 ± 0.16
$2-14$	318.3	284	0.86 ± 0.14
$2-15$	318.0		1.11 ± 0.18
$2-16$			1.00 ± 0.15
$2-17$		$\mathbf{1 . 0 0} \pm \mathbf{0 . 1 6}$	
Average			

III. Error analysis

The overall errors for the rate coefficients k_{5} and k_{11}, as shown in Table S1 and S2, are determined as follow:
a) The estimation of $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0}$ and $\left[\text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0}$
$\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0}$ and $\left[\text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0}$ was calculated as $\mathrm{y} \times \mathrm{f} \times \mathbf{b} \times\left[\mathrm{CH}_{2} \mathrm{I}_{2}\right]_{0}\left(\right.$ or $\left.\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right]_{0}\right)$.
y is the fraction of $\mathrm{CH}_{2} \mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{CHI}_{2}$ that were photolyzed by 248 nm laser and it was calculated as $\left(\mathrm{F} / h v_{248}\right) \times \sigma_{248}$. F denotes the laser fluence (0.5 cm beam diameter), and σ_{248} is the absorption cross-section of $\mathrm{CH}_{2} \mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{CHI}_{2}$ at $248 \mathrm{~nm}\left(1.61 \times 10^{-18}\right.$ and $1.57 \times 10^{-18} \mathrm{~cm}^{2}$ molecule $\left.{ }^{-1}\right) .^{3}$ In the current experimental condition, y is about 3%.
f is the fractional yield of $\mathrm{CH}_{2} \mathrm{OO} / \mathrm{CH}_{3} \mathrm{CHOO}$ from the reaction of $\mathrm{CH}_{2} \mathrm{I} / \mathrm{CH}_{3} \mathrm{CHI}$ with O_{2}, which was pressure-dependent. ${ }^{4}$ The yield of $\mathrm{CH}_{2} \mathrm{OO}$ was reported to be ca. 0.76 at 7.6 Torr and 0.52 at 200 Torr. ${ }^{4}$ For the $\mathrm{CH}_{3} \mathrm{CHOO}$, the fractional yield was reported as 0.86 ± 0.11 at 2 Torr ${ }^{5}$ and 0.9 at pressures between 5 and 20 Torr, ${ }^{6}$ but no available knowledge about the f at higher pressure was reported and therefore we adopted a value of 0.9 for f at 5-150 Torr pressure range.
b is the ratio of [syn- $\left.\mathrm{CH}_{3} \mathrm{CHOO}\right]$ to $\left[\mathrm{CH}_{3} \mathrm{CHOO}\right.$] (the existence of anti- $\mathrm{CH}_{3} \mathrm{CHOO}$). This value was estimated to be 0.7. ${ }^{6}$ This value is 1 for $\mathrm{CH}_{2} \mathrm{OO}$.

The $\left[\mathrm{CH}_{2} \mathrm{I}_{2}\right]_{0} /\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right]_{0}$ was measured by a deep UV LED (DUV325-H46, Roithner Lasertechnik, centered at 322.4 nm) and a balanced amplified photodetector (PDB450A, Thorlabs), with known absorption cross-section and LED emission profile.

b) Error analysis

Considering errors in the measurement of flow rate (1\%), pressure (3\%), temperature (1\%), the fluence of the LED light source (10%) and the UV absorption cross-section of $\mathrm{CH}_{2} \mathrm{I}_{2}(5 \%)$, we estimated the errors of $\left[\mathrm{CH}_{2} \mathrm{I}_{2}\right]$ to be 12%. With the errors of the fractional yield of $\mathrm{CH}_{2} \mathrm{OO}$ from the $\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2}$ reaction (20\%), the fluence of photolysis laser (5\%), the UV absorption cross-section of $\mathrm{CH}_{2} \mathrm{I}_{2}$ at $248 \mathrm{~nm}(5 \%)$ and $\left[\mathrm{CH}_{2} \mathrm{I}_{2}\right]$ (12%), the uncertainty of $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0}$ was calculated to be 24%.

Similarly, considering the errors of $\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right]$ (12\%), the errors of the fractional yield of $\mathrm{CH}_{3} \mathrm{CHOO}$ from the $\mathrm{CH}_{3} \mathrm{CHI}+\mathrm{O}_{2}$ reaction (20\%), the branching of syn- $\mathrm{CH}_{3} \mathrm{CHOO}(20 \%)$, the fluence of photolysis laser (5\%), and the UV absorption cross-section of $\mathrm{CH}_{3} \mathrm{CHI}_{2}$ at 248 nm (5\%). we estimated the uncertainty of $\left[s y n-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0}$ to be 31%.

During fitting the OH decay profiles, the $\mathrm{CH}_{2} \mathrm{OO}$ self-reaction rate coefficient, ${ }^{k_{4}}$, was fixed to 8×10^{-11} $\mathrm{cm}^{3} \mathrm{~s}^{-1}$, the uncertainty of which was estimated to be $50 \% .{ }^{4}$ And the $\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}$ self-reaction rate coefficient was fixed to $1.6 \times 10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ with uncertainty of $33 \% .{ }^{1}$ Therefore, the error of $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times$
k_{4} and $\left[s y n-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \times k_{13}$ is about 56% and 46%, respectively. Table S 3 and S 4 shows the values of k_{5} and k_{11} when varying the value of $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times k_{4}$ and $\left[\text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \times{ }^{k_{13}}$. According to Table S2 and S3, we estimated the error of k_{5} and k_{11} caused by the uncertainty of $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times k_{4}$ and [syn$\left.\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \times{ }^{k_{13}}$ to be 5% and 8%, respectively.

For the reaction of $\mathrm{CH}_{2} \mathrm{OO}$ with $\mathrm{CH}_{2}=\mathrm{CHCHO}$, considering the errors from fitting the OH decay profiles (5%), the linear fits $(1 \%-14 \%)$ that depend on the total pressure, the absolute $\left[\mathrm{CH}_{2}=\mathrm{CHCHO}\right](10 \%)$ and the error of ${ }^{k_{5}}$ caused by the uncertainty of $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times{ }^{k_{6}}(5 \%)$, the overall error of k_{5} was estimated to be $12-19 \%$. Similarly, we estimated the overall error of the $k_{11 \text { for }}$ the reaction of $\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}$ with $\mathrm{CH}_{2}=\mathrm{CHCHO}$ to be $15-20 \%$.

Table S3. The error of k_{5} resulting from the 56% uncertainty of $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times k_{4}$.

Exp \#	$\begin{gathered} {\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0}} \\ \times k_{4} / \mathrm{s}^{-1} \end{gathered}$	$\begin{gathered} {\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times k_{4}} \\ \times(1 \pm 56 \%) \\ / \mathrm{s}^{-1} \end{gathered}$	$\begin{gathered} k_{5} \\ / 10^{-12} \\ \mathrm{~cm}^{3} \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} k_{5} \\ / 10^{-12} \\ \mathrm{~cm}^{3} \mathrm{~s}^{-1} \end{gathered}$	Uncertainty / \%
1-1	287	445 a	1.78 a	1.80	$1.1{ }^{\text {a }}$
		$129{ }^{\text {b }}$	$1.81{ }^{\text {b }}$		$0.6{ }^{\text {b }}$
1-5	287	445	1.58	1.61	1.9
		129	1.63		1.2
1-9	287	445	1.34	1.35	0.7
		129	1.36		0.7
1-13	287	445	1.22	1.25	2.4
		129	1.34		7.2
3 a	280	434	1.97	2.05	3.9
		126	2.12		3.4
$3{ }_{\text {d }}$	294	455	1.33	1.38	3.6
		132	1.47		6.5
3 f	279	433	1.58	1.59	0.6
		126	1.60		0.6
3 h	274	424	1.56	1.66	6.0
		123	1.73		4.2

${ }^{\text {a }}$ The data highlighted in yellow shows the values and uncertainties of k_{4} when fixing the $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times{ }^{k}$ to
its upper-limit value, $\left(1.56 \times\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times{ }^{k}\right)$.
${ }^{\mathrm{b}}$ The data highlighted in grey shows the values and uncertainties of ${ }^{k_{4}}$ when fixing the $\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times{ }^{k}$ to its lower-limit value, $\left(0.44 \times\left[\mathrm{CH}_{2} \mathrm{OO}\right]_{0} \times{ }^{k}{ }_{4}\right)$.

Table S4. The error of k_{11} resulting from the 46% uncertainty of $\left[s y n-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \times k_{13}$.

Exp \#	$\begin{gathered} {[\text { syn- }} \\ \left.\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \\ \times k_{13} / \mathrm{s}^{-1} \end{gathered}$	$\begin{gathered} {\left[\text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \times} \\ k_{13} \\ \times(1 \pm 46 \%) \\ / \mathrm{s}^{-1} \end{gathered}$	$\begin{gathered} k_{11} \\ / 10^{-13} \\ \mathrm{~cm}^{3} \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} k_{11} \\ / 10^{-13} \\ \mathrm{~cm}^{3} \mathrm{~s}^{-1} \end{gathered}$	Uncertainty / \%
2-2	390	$570{ }^{\text {a }}$	$1.27{ }^{\text {a }}$	1.29	$1.6{ }^{\text {a }}$
		$211{ }^{\text {b }}$	$1.36{ }^{\text {b }}$		$5.4{ }^{\text {b }}$
2-9	390	570	1.22	1.24	1.6
		211	1.27		2.4
2-13	390	570	1.11	1.16	4.3
		211	1.17		0.9
2-14	390	570	0.92	1.03	10
		211	1.06		2.9
4 a	477	696	1.30	1.34	3
		257	1.43		6.7
4 e	426	621	1.07	1.17	8.5
		230	1.18		1
4 g	504	736	0.99	1.05	5.7
		272	1.16		10
$4{ }_{\text {i }}$	482	703	1.17	1.31	10
		260	1.43		9.2

${ }^{\text {a }}$ The data highlighted in yellow shows the values and uncertainties of ${ }^{k_{13}}$ when fixing the [syn-

${ }^{\mathrm{b}}$ The data highlighted in grey shows the values and uncertainties of ${ }^{k_{13}}$ when fixing the $\left[\text { syn }-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \times$ k_{13} to its lower-limit value, $\left(0.54 \times\left[\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}\right]_{0} \times{ }^{k_{13}}\right)$.

IV. Sensitivity analysis of the fit on \mathbf{A}_{1} and $\boldsymbol{k}_{14}^{\prime}$

During fits the OH time-dependent profiles of $\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}+\mathrm{CH}_{2}=\mathrm{CHCHO}$ reaction, the parameters of $\mathrm{A}_{0}, \mathrm{~A}_{1}, k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ (corresponding to the $k_{3}+k_{5}^{\prime}+k_{6}^{\prime}$ in the $\mathrm{CH}_{2} \mathrm{OO}+\mathrm{CH}_{2}=\mathrm{CHCHO}$ reaction), and k_{14}^{\prime} (the overall loss rate of OH) were floated. The fits are not sensitive to either A_{1} or $k^{\prime}{ }_{14}$, as shown in Table S5-S7.

OH is expected to be consumed mainly by reacting with $\mathrm{CH}_{3} \mathrm{CHI}_{2}$ and acrolein. Thus, the predicted k_{14}^{\prime} value can be calculated as follows:

$$
\begin{equation*}
k_{14}^{\prime}=k_{\mathrm{CH} 3 \mathrm{CHI} 2}\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right]+k_{\text {acrolein }}[\text { acrolein }] \tag{SII}
\end{equation*}
$$

where, the $k_{\mathrm{CH} 3 \mathrm{CHI} 2}$ and $k_{\text {acrolein }}$ are the rate coefficient for $\mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHI}_{2}$ and $\mathrm{OH}+$ acrolein reaction, respectively. $k_{\mathrm{CH} 3 \mathrm{CHI} 2}$ is not available; we take the rate coefficient for $\mathrm{OH}+\mathrm{CH}_{2} \mathrm{I}_{2}$ reaction((4.45 ± 0.32) $\left.\times 10^{-12} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$ as a reference. ${ }^{7}$ The values of $k_{\text {acrolein }}$ was reported to be $(1.99 \pm 0.24) \times 10^{-11} \mathrm{~cm}^{3} \mathrm{~s}^{-1} . .^{8}$

The fitted values of $\mathrm{A}_{0}, \mathrm{~A}_{1}, k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$-with k_{14}^{\prime} floated or fixed to the calculated values-are listed in Table S5. It shows that the fitted values of A_{0} and $k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ did not change when k_{14}^{\prime} were either floated or fixed to calculated values. This is because the decrease portion of OH profiles is mainly described by the first term of eqn (SI). ${ }^{2}$ Table S 5 also shows that the output values of A_{1} are exceptionally small when $k^{\prime}{ }_{14}$ were fixed to calculated values. This could be because the fits are not sensitive to A_{1}. We fixed $k^{\prime}{ }_{14}$ to calculated values and fixed A_{1} to different values, as shown in Table S6 and Table S7. It shows that the $k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ barely change when increasing A_{1} from 0 to 500 ([acrolein] $\sim 0.37 \times 10^{15}$ cm^{-3}) and 0 to 5000 ([acrolein] $\sim 2.4 \times 10^{15} \mathrm{~cm}^{-3}$).

Table S5. The fitted values of $\mathrm{A}_{0}, \mathrm{~A}_{1}, k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$-with k_{14}^{\prime} floated or fixed to the calculated values. The total pressure is $15 \mathrm{Torr} ;\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right] \sim(1.30 \pm 0.16) \times 10^{14} \mathrm{~cm}^{-3} ;\left[\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}\right] \sim(2.44 \pm 0.75) \times$ $10^{12} \mathrm{~cm}^{-3} ;\left[\mathrm{O}_{2}\right]=2.50 \times 10^{16} \mathrm{~cm}^{-3} ; \mathrm{I}_{248} \sim 15 \mathrm{~mJ} \mathrm{~cm}^{-2}$.

Exp \#	[acrolein]$/ 10^{15} \mathrm{~cm}^{-3}$	$\mathrm{A}_{0}, \mathrm{~A}_{1}, k_{10}+k^{\prime}{ }_{11}+k^{\prime}{ }_{12}$ and $k^{\prime}{ }_{14}$ are floated					$\begin{gathered} k_{14}^{\prime}{ }^{\mathrm{a}} \\ \text { (calculat } \\ \mathrm{ed} \text {) } \\ / \mathrm{s}^{-1} \end{gathered}$	fix $k^{\prime}{ }_{14}$ to calculated value			
		$\begin{aligned} & k_{14}^{\prime} \\ & / \mathrm{s}^{-1} \end{aligned}$	A_{0}	A_{1}	$\begin{gathered} k_{10}+k_{11}^{\prime} \\ +k_{12}^{\prime} \\ / \mathrm{s}^{-1} \end{gathered}$	$\mathrm{R}^{2} \mathrm{~b}$		A_{0}	A_{1}	$\begin{gathered} k_{10}+k_{11}^{\prime} \\ +k_{12}^{\prime} \\ / \mathrm{s}^{-1} \end{gathered}$	R^{2}
2-9-1	0.37	385910	22433	28970	500	0.997	7957	22433	2.8E-12	500	0.997
2-9-2	0.74	401190	19845	77478	543	0.998	15337	19845	3.2E-12	543	0.997
2-9-3	1.12	768250	17703	77605	590	0.998	22717	17703	$2.3 \mathrm{E}-12$	590	0.998
2-9-4	1.49	690600	15069	32855	632	0.998	30097	15069	$6.8 \mathrm{E}-13$	632	0.998
2-9-5	1.87	553220	13318	36460	684	0.998	37477	13318	$6.5 \mathrm{E}-11$	684	0.998
2-9-6	2.42	436140	10202	16520	755	0.997	44857	10202	4.9E-11	755	0.997

a. the values of $k^{\prime}{ }_{14}$ are calculated from eqn (SII).
b. R^{2} is the coefficient of determination of the fits.

Table S6. The fittd values of $k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ when fixed k_{14}^{\prime} to calculated values and fixed A_{1} to different values. The total pressure is 15 Torr; $\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right] \sim(1.30 \pm 0.16) \times 10^{14} \mathrm{~cm}^{-3} ;\left[\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}\right] \sim(2.44 \pm$ $0.75) \times 10^{12} \mathrm{~cm}^{-3} ;\left[\mathrm{O}_{2}\right]=2.50 \times 10^{16} \mathrm{~cm}^{-3} ;\left[\mathrm{CH}_{2}=\mathrm{CHCHO}\right] \sim 3.70 \times 10^{14} \mathrm{~cm}^{-3} ; \mathrm{I}_{248} \sim 15 \mathrm{~mJ} \mathrm{~cm}^{-2}$.

$\begin{array}{r} \operatorname{Exp} \\ \# \end{array}$	$\begin{gathered} \left(k_{10}+k_{11}^{\prime}+\right. \\ \left.k_{12}^{\prime}\right) \mathrm{s}^{-1} \mathrm{a} \end{gathered}$	$\begin{gathered} \mathrm{A}_{1} \\ (\mathrm{fix}) \end{gathered}$	fix A_{1} and $k^{\prime}{ }_{14}$$k_{14}^{\prime}=7957 \mathrm{~s}^{-1}$		
			A_{0}	$\begin{gathered} k_{10}+k_{11}^{\prime} \\ +k_{12}^{\prime} \\ / \mathrm{s}^{-1} \\ \hline \end{gathered}$	R^{2}
2-9-1	500	0	22433	500	0.997
		500	22562	504	0.997
		1000	22692	509	0.997

		2000	22956	519	0.996
		4000	23495	539	0.995

a. the fitted value of $k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ when $\mathrm{A}_{0}, \mathrm{~A}_{1}, k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ and k_{14}^{\prime} are floated during the fit.

Table S7. The fittd values of $k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ when fixed k_{14}^{\prime} to calculated values and fixed A_{1} to different values. The total pressure is $15 \mathrm{Torr} ;\left[\mathrm{CH}_{3} \mathrm{CHI}_{2}\right] \sim(1.30 \pm 0.16) \times 10^{14} \mathrm{~cm}^{-3} ;\left[\operatorname{syn}-\mathrm{CH}_{3} \mathrm{CHOO}\right] \sim(2.44 \pm$ $0.75) \times 10^{12} \mathrm{~cm}^{-3} ;\left[\mathrm{O}_{2}\right]=2.50 \times 10^{16} \mathrm{~cm}^{-3} ;\left[\mathrm{CH}_{2}=\mathrm{CHCHO}\right] \sim 2.42 \times 10^{15} \mathrm{~cm}^{-3} ; \mathrm{I}_{248} \sim 15 \mathrm{~mJ} \mathrm{~cm}^{-2}$.

$\begin{gathered} \operatorname{Exp} \\ \# \end{gathered}$	$\begin{gathered} \left(k_{10}+k_{11}^{\prime}\right. \\ \left.+k_{12}^{\prime}\right) \mathrm{s}^{-1} \\ \mathrm{a} \end{gathered}$	$\begin{aligned} & \mathrm{A}_{1} \\ & \text { (fix) } \end{aligned}$	fix A_{1} and $k^{\prime}{ }_{14}$$k_{14}^{\prime}=44857 \mathrm{~s}^{-1}$		
			A_{0}	$\begin{gathered} k_{10}+k_{11}^{\prime} \\ +k_{12}^{\prime} \\ / \mathrm{s}^{-1} \end{gathered}$	R^{2}
2-9-6	755	0	10202	755	0.997
		1000	10207	755	0.998
		5000	10228	758	0.998
		10000	10254	761	0.998
		30000	10359	772	0.997

a. the fitted value of $k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ when $\mathrm{A}_{0}, \mathrm{~A}_{1}, k_{10}+k_{11}^{\prime}+k_{12}^{\prime}$ and k_{14}^{\prime} are floated during the fit.

References

1 P. L. Luo, Y. Endo and Y. P. Lee, J. Phys. Chem. Lett., 2018, 9, 4391-4395.
2 X. Zhou, Y. Liu, W. Dong and X. Yang, J. Phys. Chem. Lett., 2019, 10, 4817-4821.
3 G. Schmitt and F. J. Comes, J. Photochem., 1980, 14, 107-123.
4 W. L. Ting, C. H. Chang, Y. F. Lee, H. Matsui, Y. P. Lee and J. J. Lin, J. Chem. Phys., 2014, 141, 104308.

5 N. U. M. Howes, Z. S. Mir, M. A. Blitz, S. Hardman, T. R. Lewis, D. Stone and P. W. Seakins, Phys. Chem. Chem. Phys., 2018, 20, 22218-22227.
6 L. Sheps, A. M. Scully and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701-26706.
7 S. Zhang, R. Strekowski, L. Bosland, A. Monod and C. Zetzsch, Phys. Chem. Chem. Phys., 2011, 13, 11671-11677.
8 I. Magneron, R. Thevenet, A. Mellouki and G. L. Bras, J. Phys. Chem. A, 2002, 106, 2526-2537.

