Supporting Information for

Reactions of Criegee Intermediates with Acrolein: Kinetics and Atmospheric

Implication

Xiaohu Zhou ^{a,b,c}, Yang Chen ^{c,d,e}, Yiqiang Liu ^{c,f}, Xinyong Li ^{a,*}, Wenrui Dong^{c,*} and Xueming Yang^{c,g,*}

- a. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- b. Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- c. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- d. Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- e. University of Chinese Academy of Sciences, Beijing, 100049, China
- f. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
- g. Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China

AUTHOR INFORMATION

Corresponding Author

- * E-mail: wrdong@dicp.ac.cn
- * E-mail: xmyang@dicp.ac.cn
- * E-mail: xyli@dlut.edu.cn

Table of contents:

I. Kinetic model for the <i>syn</i> -CH ₃ CHOO + CH ₂ =CHCHO reaction	S3
II. Summary of experimental conditions (Table S1-S2)	S4
III. Error analysis (Table S3-S4)	S6
IV. Sensitivity analysis of the fit on A_1 and k'_{14} (Table S5-S7)	S9
Reference	.S11

I. Kinetic model for the syn-CH₃CHOO + CH₂=CHCHO reaction

The formation of syn-CH₃CHOO includes reactions listed below:

$$CH_{3}CHI_{2} + hv \rightarrow CH_{3}CHI + I$$
(R8)

$$CH_3CHI + O_2 \xrightarrow{n_{9a}} syn-CH_3CHOO + I$$
 (R9a)

$$\stackrel{_{\mathsf{N}_{9b}}}{\rightarrow} anti\text{-}\mathrm{CH}_{3}\mathrm{CHOO} + \mathrm{I}$$
(R9b)

$$\xrightarrow{k_{9c}} \text{ other products} \tag{R9c}$$

The consumption of ^{*syn* - CH₃CHOO} results from the following reactions:

Ŀ

$$syn - CH_3 CHOO \xrightarrow{k_{10a}} OH$$
 (R10a)

$$\stackrel{k_{10b}}{\rightarrow} \text{ other products} \tag{R10b}$$

$$syn - CH_3CHOO + CH_2 = CHCHO \rightarrow products$$
 (R11)

$$syn - CH_3CHOO + X \xrightarrow{k_{12}} products$$
 (R12)

$$syn - CH_3CHOO + syn - CH_3CHOO \rightarrow$$
 products (R13)

Reaction (R7) describes the consumption of OH:

$$OH + Y \xrightarrow{k_{14}} products$$
 (R14)

Where X in reaction (R12) denotes the species that react with *syn*-CH₃CHOO, such as I and CH₃CHI₂. Y in reaction (R14) denotes the species that consume the OH, e.g., IO, CH₃CHI₂, CH₃CHO, and CH₂=CHCHO. We neglected the cross-self-reaction of *syn*-CH₃CHOO with *anti*-CH₃CHOO as it is hardly discernible under similar experimental condition.¹

The OH($\nu''=0$) decay profiles were fitted with the expression (II) (for details see our previous publication)²:

$$S_{\rm OH} = \frac{A_0 (k_{10} + k'_{11} + k'_{12})}{(k_{10} + k'_{11} + k'_{12}) e^{(k_{10} + k'_{11} + k'_{12})t} + 2k_{13} [syn - CH_3 CHOO]_0 (e^{(k_{10} + k'_{11} + k'_{12})t} - 1)} - A_1 e^{-k'_{14}t}$$
(SI)
where $A_0 = \gamma \frac{k_{10a} [syn - CH_3 CHOO]_0}{k'_{14} - (k_{10} + k'_{11} + k'_{12})}$, $A_1 = \gamma \left(\frac{k_{10a} [syn - CH_3 CHOO]_0}{k'_{14} - (k_{10} + k'_{11} + k'_{12})} - [OH]_0 \right)$.

In expression (II), $k_{11}^{'} = k_{11}$ [CH₂=CHCHO]; $k_{12}^{'} = k_{12}$ [X]; k_{13} was fixed to a reported value of 1.6×10^{-10} cm³ s⁻¹, $k_{14}^{'} = k_{14}$ [Y]. The initial concentration of *syn*-CH₃CHOO, [*syn*-CH₃CHOO]₀, was fixed to

a calculated value during the fitting. $^{[OH]_0}$ is the concentration of OH from the decomposition of energized CH₃CHOO; γ is the OH detection efficiency.

II. Summary of experimental conditions

Table S1. Summary of the experimental conditions for CH₂OO reaction with CH₂=CHCHO at different temperatures. The total pressure is 10 Torr; $[CH_2I_2] \sim (1.54 \pm 0.18) \times 10^{14} \text{ cm}^{-3}$; $[CH_2OO] \sim (3.59 \pm 0.86) \times 10^{12} \text{ cm}^{-3}$; $[O_2] = 2.50 \times 10^{16} \text{ cm}^{-3}$; $I_{248} \sim 15 \text{ mJ cm}^{-2}$.

	Т	$k_3 + k_6'$	k_5
Exp #	/ K	/ s ⁻¹	$/10^{-12} cm^3 s^{-1}$
1-1	281.3	451	1.80 ± 0.23
1-2	281.5	480	1.80 ± 0.22
1-3	281.2	514	1.87 ± 0.23
1-4	281.3	422	1.85 ± 0.23
Average			$\textbf{1.83} \pm \textbf{0.23}$
1-5	298.4	427	1.61 ± 0.20
1-6	298.3	584	1.64 ± 0.20
1-7	298.5	673	1.69 ± 0.21
1-8	298.4	504	1.60 ± 0.20
Average			1.64 ± 0.20
1-9	308.5	520	1.35 ± 0.17
1-10	308.1	504	1.45 ± 0.17
1-11	308.4	476	1.39 ± 0.18
1-12	308.2	445	1.47 ± 0.18
Average			1.42 ± 0.17
1-13	318.1	405	1.25 ± 0.15
1-14	318.5	413	1.31 ± 0.16
1-15	318.2	599	1.36 ± 0.17
1-16	318.1	467	1.35 ± 0.17
Average			1.32 ± 0.16

	Т	$k_{10} + k_{12}$	k ₁₁
Exp #	/ K	/ s ⁻¹	$/10^{-13} cm^3 s^{-1}$
2-1	282.9	456	1.38 ± 0.23
2-2	282.8	439	1.29 ± 0.19
2-3	282.8	424	1.33 ± 0.23
2-4	282.7	353	1.42 ± 0.22
Average			1.36 ± 0.21
2-5	298.5	296	1.33 ± 0.19
2-6	298.4	537	1.22 ± 0.23
2-7	298.3	313	1.25 ± 0.23
2-8	298.3	543	1.19 ± 0.19
2-9	298.1	451	1.24 ± 0.17
Average			1.25 ± 0.21
2-10	308.3	257	1.18 ± 0.22
2-11	308.7	303	1.04 ± 0.21
2-12	308.6	324	1.19 ± 0.18
2-13	308.2	301	1.16 ± 0.18
Average			1.14 ± 0.19
2-14	318.5	283	1.03 ± 0.16
2-15	318.3	374	0.86 ± 0.14
2-16	318.3	284	1.11 ± 0.18
2-17	318.0	361	1.00 ± 0.15
Average			1.00 ± 0.16

Table S2. Summary of the experimental conditions for *syn*-CH₃CHOO reaction with CH₂=CHCHO at different temperatures. The total pressure is 15 Torr; $[CH_3CHI_2] \sim (1.30 \pm 0.16) \times 10^{14} \text{ cm}^{-3}$; $[syn-CH_3CHOO] \sim (2.44 \pm 0.75) \times 10^{12} \text{ cm}^{-3}$; $[O_2] = 2.50 \times 10^{16} \text{ cm}^{-3}$; $I_{248} \sim 15 \text{ mJ cm}^{-2}$.

III. Error analysis

The overall errors for the rate coefficients k_5 and k_{11} , as shown in Table S1 and S2, are determined as follow:

a) The estimation of [CH₂OO]₀ and [syn-CH₃CHOO]₀

 $[CH_2OO]_0$ and $[syn-CH_3CHOO]_0$ was calculated as $y \times f \times b \times [CH_2I_2]_0$ (or $[CH_3CHI_2]_0$).

y is the fraction of CH₂I₂/CH₃CHI₂ that were photolyzed by 248 nm laser and it was calculated as $(F/hv_{248}) \times \sigma_{248}$. F denotes the laser fluence (0.5 cm beam diameter), and σ_{248} is the absorption cross-section of CH₂I₂/CH₃CHI₂ at 248 nm (1.61×10⁻¹⁸ and 1.57×10⁻¹⁸ cm² molecule⁻¹).³ In the current experimental condition, y is about 3%.

f is the fractional yield of CH₂OO/CH₃CHOO from the reaction of CH₂I/CH₃CHI with O₂, which was pressure-dependent.⁴ The yield of CH₂OO was reported to be ca. 0.76 at 7.6 Torr and 0.52 at 200 Torr.⁴ For the CH₃CHOO, the fractional yield was reported as 0.86 ± 0.11 at 2 Torr ⁵ and 0.9 at pressures between 5 and 20 Torr,⁶ but no available knowledge about the f at higher pressure was reported and therefore we adopted a value of 0.9 for f at 5-150 Torr pressure range.

b is the ratio of [*syn*-CH₃CHOO] to [CH₃CHOO] (the existence of *anti*-CH₃CHOO). This value was estimated to be 0.7.⁶ This value is 1 for CH₂OO.

The $[CH_2I_2]_0 / [CH_3CHI_2]_0$ was measured by a deep UV LED (DUV325-H46, Roithner Lasertechnik, centered at 322.4 nm) and a balanced amplified photodetector (PDB450A, Thorlabs), with known absorption cross-section and LED emission profile.

b) Error analysis

Considering errors in the measurement of flow rate (1%), pressure (3%), temperature (1%), the fluence of the LED light source (10%) and the UV absorption cross-section of CH_2I_2 (5%), we estimated the errors of [CH_2I_2] to be 12%. With the errors of the fractional yield of CH_2OO from the $CH_2I + O_2$ reaction (20%), the fluence of photolysis laser (5%), the UV absorption cross-section of CH_2I_2 at 248 nm (5%) and [CH_2I_2] (12%), the uncertainty of [CH_2OO]₀ was calculated to be 24%.

Similarly, considering the errors of $[CH_3CHI_2]$ (12%), the errors of the fractional yield of CH₃CHOO from the CH₃CHI + O₂ reaction (20%), the branching of *syn*-CH₃CHOO (20%), the fluence of photolysis laser (5%), and the UV absorption cross-section of CH₃CHI₂ at 248 nm (5%). we estimated the uncertainty of [*syn*-CH₃CHOO]₀ to be 31%.

During fitting the OH decay profiles, the CH₂OO self-reaction rate coefficient, k_4 , was fixed to 8×10^{-11} cm³ s⁻¹, the uncertainty of which was estimated to be 50%.⁴ And the *syn*-CH₃CHOO self-reaction rate coefficient was fixed to 1.6×10^{-10} cm³ s⁻¹ with uncertainty of 33%.¹ Therefore, the error of [CH₂OO]₀ ×

 k_4 and $[syn-CH_3CHOO]_0 \times k_{13}$ is about 56% and 46%, respectively. Table S3 and S4 shows the values of k_5 and k_{11} when varying the value of $[CH_2OO]_0 \times k_4$ and $[syn-CH_3CHOO]_0 \times k_{13}$. According to Table S2 and S3, we estimated the error of k_5 and k_{11} caused by the uncertainty of $[CH_2OO]_0 \times k_4$ and $[syn-CH_3CHOO]_0 \times k_4$ and $[syn-CH_3CHOO]_0 \times k_{13}$ to be 5% and 8%, respectively.

For the reaction of CH₂OO with CH₂=CHCHO, considering the errors from fitting the OH decay profiles (5%), the linear fits (1%-14%) that depend on the total pressure, the absolute [CH₂=CHCHO] (10%) and the error of k_5 caused by the uncertainty of [CH₂OO]₀ × k_6 (5%), the overall error of k_5 was estimated to be 12-19%. Similarly, we estimated the overall error of the k_{11} for the reaction of *syn*-CH₃CHOO with CH₂=CHCHO to be 15-20%.

Exp #	$[CH_2OO]_0 \\ \times \frac{k_4}{s^{-1}}$	$[CH_2OO]_0 \times k_4$ $\times (1 \pm 56\%)$ $/s^{-1}$	k_5 /10 ⁻¹² cm ³ s ⁻¹	k_5 /10 ⁻¹² cm ³ s ⁻¹	Uncertainty / %
1_1	287	445 ^a	1.78 ª	1.80	1.1 ^a
1-1	207	129 ^b	1.81 ^b	1.00	0.6 ^b
1.5	297	445	1.58	1.61	1.9
1-5	207	129	1.63	1.01	1.2
1.0	297	445	1.34	1 25	0.7
1-9	287	129	1.36	1.55	0.7
1 12	297	445	1.22	1 25	2.4
1-15	287	129	1.34	1.23	7.2
2	280	434	1.97	2.05	3.9
Ja	280	126	2.12	2.05	3.4
2	204	455	1.33	1 20	3.6
3 _d	294	132	1.47	1.38	6.5
2	270	433	1.58	1.50	0.6
\mathcal{I}_{f}	219	126	1.60	1.39	0.6
2	274	424	1.56	1.66	6.0
3 _h	274	123	1.73	1.00	4.2

Table S3. The error of k_5 resulting from the 56% uncertainty of $[CH_2OO]_0 \times k_4$.

^a The data highlighted in yellow shows the values and uncertainties of k_4 when fixing the [CH₂OO]₀× k_4 to

its upper-limit value, $(1.56 \times [CH_2OO]_0 \times k_4)$.

^b The data highlighted in grey shows the values and uncertainties of k_4 when fixing the [CH₂OO]₀× k_4 to its lower-limit value, $(0.44 \times [CH_2OO]_0 \times k_4)$.

Exp #	$[syn-CH_3CHOO]_0$ $\times k_{13/S}^{-1}$	$[syn-CH_3CHOO]_0 \times k_{13} \times (1 \pm 46\%) / s^{-1}$	k_{11} /10 ⁻¹³ cm ³ s ⁻¹	k_{11} /10 ⁻¹³ cm ³ s ⁻¹	Uncertainty /%
2_2	390	570 ª	1.27 ^a	1 20	1.6 ^a
2-2	590	211 ^b	1.36 ^b	1.29	5.4 ^b
2.0	200	570	1.22	1.24	1.6
2-9	390	211	1.27	1.24	2.4
2 12	390	570	1.11	1.16	4.3
2-13		211	1.17		0.9
2.14	390	570	0.92	1.03	10
2-14		211	1.06		2.9
1	477	696	1.30	1 2 4	3
4 _a	4//	257	1.43	1.34	6.7
1	176	621	1.07	1 17	8.5
4 _e	426	230	1.18	1.1/	1
	504	736	0.99	1.05	5.7
4 _g	504	272	1.16	1.03	10
4 _i	400	703	1.17	1 2 1	10
	482	260	1.43	1.31	9.2

Table S4. The error of k_{11} resulting from the 46% uncertainty of $[syn-CH_3CHOO]_0 \times k_{13}$.

^a The data highlighted in yellow shows the values and uncertainties of k_{13} when fixing the [syn-CH₃CHOO]₀× k_{13} to its upper-limit value, (1.46×[syn-CH₃CHOO]₀× k_{13}).

^b The data highlighted in grey shows the values and uncertainties of k_{13} when fixing the [*syn*-CH₃CHOO]₀× k_{13} to its lower-limit value, (0.54×[*syn*-CH₃CHOO]₀× k_{13}).

IV. Sensitivity analysis of the fit on A_1 and k'_{14}

During fits the OH time-dependent profiles of *syn*-CH₃CHOO + CH₂=CHCHO reaction, the parameters of A₀, A₁, $k_{10} + k'_{11} + k'_{12}$ (corresponding to the $k_3 + k'_5 + k'_6$ in the CH₂OO + CH₂=CHCHO reaction), and k'_{14} (the overall loss rate of OH) were floated. The fits are not sensitive to either A₁ or k'_{14} , as shown in Table S5-S7.

OH is expected to be consumed mainly by reacting with CH_3CHI_2 and acrolein. Thus, the predicted k'_{14} value can be calculated as follows:

$$k'_{14} = k_{\text{CH3CHI2}}[\text{CH}_3\text{CHI}_2] + k_{\text{acrolein}}[\text{acrolein}]$$
(SII)

where, the k_{CH3CH12} and k_{acrolein} are the rate coefficient for OH +CH₃CHI₂ and OH + acrolein reaction, respectively. k_{CH3CH12} is not available; we take the rate coefficient for OH + CH₂I₂ reaction((4.45 ± 0.32) × 10⁻¹² cm³ s⁻¹) as a reference.⁷ The values of k_{acrolein} was reported to be (1.99 ± 0.24) × 10⁻¹¹ cm³ s⁻¹.⁸

The fitted values of A₀, A₁, $k_{10} + k'_{11} + k'_{12}$ —with k'_{14} floated or fixed to the calculated values—are listed in Table S5. It shows that the fitted values of A₀ and $k_{10} + k'_{11} + k'_{12}$ did not change when k'_{14} were either floated or fixed to calculated values. This is because the decrease portion of OH profiles is mainly described by the first term of eqn (SI).² Table S5 also shows that the output values of A₁ are exceptionally small when k'_{14} were fixed to calculated values. This could be because the fits are not sensitive to A₁. We fixed k'_{14} to calculated values and fixed A₁ to different values, as shown in Table S6 and Table S7. It shows that the $k_{10} + k'_{11} + k'_{12}$ barely change when increasing A₁ from 0 to 500 ([acrolein] ~ 0.37 × 10¹⁵ cm⁻³) and 0 to 5000 ([acrolein] ~ 2.4 × 10¹⁵ cm⁻³).

Table S5. The fitted values of A₀, A₁, $k_{10} + k'_{11} + k'_{12}$ —with k'_{14} floated or fixed to the calculated values. The total pressure is 15 Torr; [CH₃CHI₂]~ (1.30 ± 0.16) × 10¹⁴ cm⁻³; [*syn*-CH₃CHOO] ~ (2.44 ± 0.75) × 10¹² cm⁻³; [O₂] = 2.50 × 10¹⁶ cm⁻³; I₂₄₈~15 mJ cm⁻².

Exp #	[acrolein]	A ₀ , A ₁ , $k_{10} + k'_{11} + k'_{12}$ and k'_{14} are floated					k' ₁₄ ^a (calculat	fix k'_{14} to calculated value			
1	/10 ¹⁵ cm ⁻³	k' ₁₄ /s ⁻¹	\mathbf{A}_{0}	A ₁	$k_{10} + k'_{11} + k'_{12}$ /s ⁻¹	R ^{2 b}	ed) /s ⁻¹	A ₀	A ₁	$k_{10} + k'_{11} + k'_{12} / s^{-1}$	R ²
2-9-1	0.37	385910	22433	28970	500	0.997	7957	22433	2.8E-12	500	0.997
2-9-2	0.74	401190	19845	77478	543	0.998	15337	19845	3.2E-12	543	0.997
2-9-3	1.12	768250	17703	77605	590	0.998	22717	17703	2.3E-12	590	0.998
2-9-4	1.49	690600	15069	32855	632	0.998	30097	15069	6.8E-13	632	0.998
2-9-5	1.87	553220	13318	36460	684	0.998	37477	13318	6.5E-11	684	0.998
2-9-6	2.42	436140	10202	16520	755	0.997	44857	10202	4.9E-11	755	0.997

a. the values of k'_{14} are calculated from eqn (SII).

b. R² is the coefficient of determination of the fits.

Table S6. The fittd values of $k_{10} + k'_{11} + k'_{12}$ when fixed k'_{14} to calculated values and fixed A₁ to different values. The total pressure is 15 Torr; [CH₃CHI₂]~ (1.30 ± 0.16) × 10¹⁴ cm⁻³; [*syn*-CH₃CHOO] ~ (2.44 ± 0.75) × 10¹² cm⁻³; [O₂] = 2.50 × 10¹⁶ cm⁻³; [CH₂=CHCHO]~ 3.70×10¹⁴ cm⁻³; I₂₄₈~15 mJ cm⁻².

Eur	$(k_{10} + k'_{11} + k'_{12})$ s ⁻¹ a	A ₁ (fix)	fix A ₁ and k'_{14} $k'_{14} = 7957 \text{ s}^{-1}$		
#			A ₀		R ²
		0	22433	500	0.997
2-9-1	500	500	22562	504	0.997
		1000	22692	509	0.997

2000	22956	519	0.996
4000	23495	539	0.995

a. the fitted value of $k_{10} + k'_{11} + k'_{12}$ when A₀, A₁, $k_{10} + k'_{11} + k'_{12}$ and k'_{14} are floated during the fit.

Table S7. The fittd values of $k_{10} + k'_{11} + k'_{12}$ when fixed k'_{14} to calculated values and fixed A₁ to different values. The total pressure is 15 Torr; [CH₃CHI₂]~ (1.30 ± 0.16) × 10¹⁴ cm⁻³; [*syn*-CH₃CHOO] ~ (2.44 ± 0.75) × 10¹² cm⁻³; [O₂] = 2.50 × 10¹⁶ cm⁻³; [CH₂=CHCHO]~ 2.42×10¹⁵ cm⁻³; I₂₄₈~15 mJ cm⁻².

			fix A_1 and k'_{14}				
Exp	$(k_{10} + k'_{11} + k'_{12})$ s ⁻¹ a	A ₁	$k'_{14} = 44857 \text{ s}^{-1}$				
#				$k_{10} + k'_{11}$			
			A ₀	$+ k'_{12}$	R ²		
				/s ⁻¹			
		0	10202	755	0.997		
		1000	10207	755	0.998		
2-9-6	755	5000	10228	758	0.998		
		10000	10254	761	0.998		
		30000	10359	772	0.997		

a. the fitted value of $k_{10} + k'_{11} + k'_{12}$ when A₀, A₁, $k_{10} + k'_{11} + k'_{12}$ and k'_{14} are floated during the fit.

References

- 1 P. L. Luo, Y. Endo and Y. P. Lee, J. Phys. Chem. Lett., 2018, 9, 4391-4395.
- 2 X. Zhou, Y. Liu, W. Dong and X. Yang, J. Phys. Chem. Lett., 2019, 10, 4817-4821.
- 3 G. Schmitt and F. J. Comes, J. Photochem., 1980, 14, 107-123.
- 4 W. L. Ting, C. H. Chang, Y. F. Lee, H. Matsui, Y. P. Lee and J. J. Lin, *J. Chem. Phys.*, 2014, **141**, 104308.
- 5 N. U. M. Howes, Z. S. Mir, M. A. Blitz, S. Hardman, T. R. Lewis, D. Stone and P. W. Seakins, *Phys. Chem. Chem. Phys.*, 2018, **20**, 22218-22227.
- 6 L. Sheps, A. M. Scully and K. Au, *Phys. Chem. Chem. Phys.*, 2014, 16, 26701-26706.
- 7 S. Zhang, R. Strekowski, L. Bosland, A. Monod and C. Zetzsch, *Phys. Chem. Chem. Phys.*, 2011, **13**, 11671-11677.
- 8 I. Magneron, R. Thevenet, A. Mellouki and G. L. Bras, J. Phys. Chem. A, 2002, 106, 2526-2537.