Naniwa et al.

Supporting information

Ligand-to-metal charge transfer of pyridine surface complex on TiO_2 for

selective dehydrogenative cross-coupling with benzene

Shimpei Naniwa^a, Shinichiro Hishitani^a, Akira Yamamoto^{a,b} and Hisao Yoshida^{a,b}*

^a Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies,

Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

^b Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara,

Nishikyo-ku, Kyoto 615-8245, Japan

* E-mail address: yoshida.hisao.2a@kyoto-u.ac.jp

Contents

1.	Bond dissociation energy (BDE)	.2
2.	Blank test	.2
3.	Optimization of titanium dioxide	.3

1. Bond dissociation energy (BDE)

Some C–H Bond dissociation energies (BDEs) of pyridine and benzene reported in literature are summarized in Table S1.

Compound	Site		BDE / kJ mol ⁻¹
Pyridine	2	€ N H	439.3 ± 0.8
	3	H N	468.6 ± 8.4
	4	H H	468.6 ± 8.4
Benzene	-	N	472.2 ± 2.2

Table S1 C–H Bond dissociation energies of pyridine and benzene^a

^a The values were cited from Y. R. Ruo, *Comprehensive Handbook* of *Chemical Bond Energies*, CRC Press, 2007.

2. Blank test

Table S2 shows results of blank tests. The reaction did not proceed in dark or in the absence of the photocatalyst (Table S2, entries 1 and 2), which confirmed the reaction proceeds photocatalytically. Concomitant hydrogen production also confirmed the reaction took place dehydrogenatively (Table S2, entries 3). The amount of hydrogen is larger than expected from those of the detected organic products, as indicated by the large value of the H₂ balance. This could be due to undetected strongly adsorbed products on the catalyst surface or the progress of side reactions such as successive reactions of the products to form larger oligomers.

Table S2 Results of blank tests^a

Entry	Catalyct	Light	Produ	cts ^b / µn	nol	
Entry	Calalysi	LIGHT	PhPs	BPs	BPh	H₂ (balance) ^c
1	Yes	No	n.d. ^d	n.d. ^d	n.d. ^d	n.d. ^{<i>d</i>} (-)
2	No	Yes	n.d. ^d	n.d. ^d	n.d. ^d	n.d. ^{<i>d</i>} (-)
3	Yes	Yes	1.6	0.14	0.12	3.4 (1.8)

^{*a*} Reaction conditions: pyridine (0.1 mL, 1.2 mmol) and benzene (1.9 mL, 21 mmol) with a pristine TIO₂ photocatalyst (JRC-TIO-14, 0.1 g) were used, the reaction time was 2 h, and the irradiation wavelength was $\lambda > 400$ nm. ^{*b*} PhPs: total amount of 2-PhP, 3-PhP, and 4-PhP. BPs: total amount of 2,2'-BP, 2,3'-BP, and 2,4'-BP. ^{*c*} The H₂ balance was calculated as [actual amount of H₂ (µmol)]/[expected amount of H₂ from the total amount of the coupled products, PhPs, BPs, and BPh (µmol)]. ^{*d*} Not detected.

3. Optimization of titanium dioxide

The reaction tests were carried out with various pristine TiO₂ samples for the dehydrogenative crosscoupling (DCC) reaction under visible light irradiation ($\lambda > 400$ nm). The results are shown in Table S3. The yield of PhPs increased with increasing the surface area of TiO₂ (Table S3, entries 1–6) and JRC-TIO-14 (Table S3, entry 6), which has the largest surface area, gave the largest amount of PhPs. A rutile sample showed comparable activity to JRC-TIO-14 (Table S3, entry 7). We employed JRC-TIO-14 as the TiO₂ photocatalyst in the following experiments. The larger specific surface area would be favorable to the surface complex formation.

Entry	TiO ₂	Crystal phase	Specific surface area / m ² g ⁻¹	Produc	cts / μmo	ol ^{<i>b</i>}	Selecti PhPs (S	vity to %) ^d
				PhPs	BPs	BPh	S _{Py}	S _{Be}
1	JRC-TIO-2	Anatase	18	n.d. ^c	n.d. ^c	n.d. ^c	-	-
2	JRC-TIO-13	Anatase	59	0.25	n.d. ^c	0.09	>99	59
3	JRC-TIO-7	Anatase	279	0.48	0.05	0.04	83	86
4	JRC-TIO-12	Anatase	290	0.58	0.03	0.08	88	78
5	JRC-TIO-9	Anatase	290–310	0.56	0.03	0.05	92	85
6	JRC-TIO-14	Anatase	338	1.6	0.14	0.12	85	88
7	JRC-TIO-6	Rutile	100	1.4	0.14	0.11	83	86

Table 00 Results of the reaction tests and i photomradiation with various pristine rioz photocatalysts

^{*a*} Reaction conditions: pyridine (0.10 mL, 1.2 mmol) and benzene (1.9 mL, 21 mmol) were used with a pristine TiO₂ photocatalyst (0.1 g), the reaction time was 2 h, the irradiation wavelength was $\lambda > 400$ nm, and the light intensity was 160 mW cm⁻² measured at a wavelength of 415 ± 55 nm. ^{*b*} PhPs: total amount of 2-PhP, 3-PhP, and 4-PhP. BPs: total amount of 2,2'-BP, 2,3'-BP, and 2,4'-BP. ^{*c*} Not detected. ^{*d*} Selectivity of DCC. The selectivity based on pyridine was calculated as $S_{Py} = [100 \times PhPs (mmol)]/[(PhPs + 2 \times BPs) (mmol)]$; the selectivity based on benzene was calculated as $S_{Be} = [100 \times PhPs (mmol)]/[(PhPs + 2 \times BPh) (mmol)]$.