Supplementary Material: Effect of Electron-Phonon Coupling on Transport Properties of Monolayers of ZrS_2 , BiI_3 and PbI_2 : A thermoelectric Perspective

Gautam Sharma,¹ Vineet Kumar Pandey,¹ Shouvik Datta,² and Prasenjit Ghosh^{3,*}

¹Dept. of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, India ²Dept. of Physics, Centre for Energy Science, Indian Institute of Science

Education and Research, Dr. Homi Bhabha Road, Pune-411008, India

³Department of Physics, Centre for Energy Science,

Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India

^{*} pghosh@iiserpune.ac.in

TABLE S1. Pauling electronegativity (EN) values for the different elements present in the monolayers.[1] Difference between the electronegativity (ΔEN) of the elements present in the monolayers.

Element	EN
Zr	1.33
Pb	2.33
Bi	2.02
Ι	2.66
S	2.58
System	ΔEN
ZrS_2	1.25
BiI_3	0.64
PbI_2	0.33

I. MODE-RESOLVED IMAGINARY PART OF ELECTRON-PHONON SELF-ENERGY

FIG. S1. The mode resolved imaginary part of electron-phonon self energy for the valence (top panels (a-c)) and conduction (middle panels (d-f)) bands for the ML-ZrS₂, ML-BiI₃ and ML-PbI₂ at 300 K, where contribution from various modes are shown by different colors. The largest contribution to $\text{Im}\Sigma_{n,k}$ due to optical modes is shown by red curves in each case. The vibrational patterns of optical modes at Γ point with dominant contribution to $\text{Im}\Sigma_{n,k}$ are shown for ML-ZrS₂, ML-BiI₃ and ML-PbI₂ in (g-i).

[1] Inorganic Chemistry by J. E. Huheey, E. A. Keiter, R. L. Keiter and O. K. Medhi, Pub: Pearson Education India.