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Fig. S1. The calculated total energy of different materials under the cut-off energy in the range of 

300~700 eV.

Fig. S2. The calculated binding energies of Fe/2D WO2 with Fe atom ratios in the range from 1/72 

to 1/6.
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Fig. S3. Electron density of states (DOS): (a) 2D WO2, (b) Fe/2D WO2, (c) Co/2D WO2, and (d) 

Ni/2D WO2 (The fermi level was set as zero).
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Fig. S4. d band center calculations: (a) 2D WO2, (b) Fe/2D WO2, (c) Co/2D WO2, and (d) Ni/2D 

WO2 (The black line is d band PDOS, and the red line is a multiplication of PDOS by energy.).

d band center calculation:

The surface d-band center (Ed) was computed as the first moment of the projected d-band density 

of states about the Fermi level (EF) and is expressed as1

                                                                                                                                (S1)

𝐸𝑑 =
∫𝜌𝐸𝑑𝐸

∫𝜌𝑑𝐸

where ρ represents the density of states and E is the energy (eV) of the states.
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Table S1. Total energies of various intermediates on different catalysts.

E (eV) *H *OH *OOH *O H2O O2

2D WO2 -333.24 -338.05 -343.27 -332.57 -344.68 -339.23

Fe/2DWO2 -345.06 -352.86 -357.30 -348.01 -357.43 -353.04

Co/2DWO2 -343.98 -351.67 -356.13 -346.22 -356.27 -351.64

Ni/2DWO2 -342.77 -350.10 -354.66 -344.32 -354.90 -350.35

Table S2. Zero point energy (ZPE) corrections of various intermediates on different catalysts.

EZPE (eV) *H *OH *OOH *O

WO2 0.37 0.30 0.40 0.06

Fe/WO2 0.15 0.34 0.44 0.08

Co/WO2 0.16 0.35 0.43 0.06

Ni/WO2 0.17 0.33 0.44 0.06

Table S3. Total energies (E), and entropic contributions (TS) to the free energies of various 

species.2

Species *OH *OOH *O H2O H2

E -7.09 -12.75 - -14.22 -6.76

TS 0.07 0.16 0.05 0.67 0.41
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Table S4. Adsorption free energy values of oxygenated intermediates on different catalysts.

Catalysts ΔG*OH/eV ΔG*O/eV ΔG*OOH

2DWO2 3.632 5.354 5.787

Fe/2DWO2 0.716 1.790 3.647

Co/2DWO2 0.723 2.372 3.617

Ni/2DWO2 0.945 3.031 3.859

Fig. S5 Optimized three possible structures with oxygen vacancies on the surface of Fe/2D WO2. 

(The red, gray, and gold balls represent O, W, and Fe atom, respectively.)

The oxygen vacancy formation energy  can been calculated by3𝐸𝑣𝑎𝑐

                                                                                                      (S2)
𝐸𝑣𝑎𝑐 = 𝐸𝑐𝑒𝑙𝑙𝑣𝑎𝑐 +

1
2𝐸𝑂2

‒ 𝐸𝑐𝑒𝑙𝑙

where and are the total energies of the optimized supercells with and without an O 𝐸𝑐𝑒𝑙𝑙𝑣𝑎𝑐 𝐸𝑐𝑒𝑙𝑙 

vacancy, and is the total energy for the ground state of an optimized oxygen molecule in the 
 𝐸𝑂2

gas phase. A positive value for  indicates that energy is needed to create O vacancy. The oxygen 𝐸𝑣𝑎𝑐

vacancy formation energies of three possible structures (Fig. S5) are 4.26, 5.42, and 5.86 eV. The 
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large formation energy reveals that the introduction of single atoms is thermodynamically difficult 

to generate oxygen vacancies.
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Fig. S6 Optimized structure of (a)2D WO2 and (b) 2D WO2 with oxygen vacancy (2D WO2-Ov); 

Adsorption structures for*OH of (c) 2D WO2-Ov-1 (active sites are oxygen vacancies) and (d) 

2D WO2-Ov-2 (active sites are not oxygen vacancies), where red,  gray, and white balls represent 

oxygen, tungsten, and hydrogen atoms, respectively; Free energy diagrams for OER of (e) 2D 

WO2-Ov-1 and (f) 2D WO2-Ov-2.

The 2D WO2 model with oxygen vacancy on the surface (denoted as 2D WO2-Ov) was built for 

OER simulation. The bond angle of W-O-W, which is 92.4361o in WO2, changes to 79.7617o after 

introducing oxygen vacancies, indicating that the distances between atoms around the oxygen 

vacancies are shortened to achieve energy balance (Fig.S6a~b). For the oxygen-defective model, 

both the vacant and adjacent W sites were considered as the possible active sites and denoted as 

2D WO2-Ov-1 and 2D WO2-Ov-2, respectively. The optimized structural configurations with *OH 

were presented in Fig. S6c~d. When oxygen vacancies are used as active sites to adsorb *OH, two 

processes occur simultaneously during the energy relaxation process. One is the adsorption of *OH 

on the surface, which is an exothermic process. Another is the endothermic process of filling the 

surface oxygen vacancies with oxygen in *OH to expand the distance between surrounding atoms, 

leading to an increase of the W-O-W bond angle. The calculated ΔG*OH for 2D WO2-Ov-1 is too 

large to proceed the OER process (Fig.S6e). In contrast, when oxygen vacancies are not used as 

active sites, a smaller overpotential (1.4 V) can be obtained (Fig.S6f). Therefore, the OER process 

is easier to take place on the surface of 2D WO2-Ov than the stoichiometric ones (with an 

overpotential of 2.4 V) when adjacent W sites are considered as the possible active sites. However, 

the overpotential of 2D WO2-Ov-2 was still larger than those of single metal atom (Fe, Co, Ni) 

doped models.
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