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1 Force-field calculations 
 The Gibbs energy per formula unit (f.u.) for the crystal without defects, 𝐺0, consists of the static and vibrational contributions. 

They are, respectively, the lattice internal energy/f.u., 𝑈𝑙𝑎𝑡 , and the phonon Helmholtz energy/f.u., 𝐹𝑣𝑖𝑏: 

𝐺0 = 𝑈𝑙𝑎𝑡 + 𝑝𝑉 + 𝐹𝑣𝑖𝑏, (1) 

where p is the external pressure (1 bar in this work) and V is the volume/f.u. 

 In this work, 𝑈𝑙𝑎𝑡  is approximated to the lattice potential energy/f.u that has contributions from individual ions and pairwise 

interactions. The former arises from the atomic polarization of O2- and Cl-, as described by the shell model (the less polarizable Li+ 

was modelled as a rigid ion). Within such model,1 each ion is comprised of a core (nucleus and innermost electrons) and a shell 

(remaining electrons) that may be displaced from one another by a distance d, in which case a harmonic potential energy 𝑈𝑖
𝐻  with 

force constant k is assumed: 

𝑈𝑖
𝐻 = 𝑘𝑖𝑑𝑖

2/2 . (2) 

The pairwise interactions consist of a superposition of electrostatic (𝑈𝑖𝑗
𝐸 ) and Buckingham (𝑈𝑖𝑗

𝐵) potentials, 

𝑈𝑖𝑗
𝐵 = 𝐴𝑖𝑗 𝑒𝑥𝑝(− 𝑟𝑖𝑗 𝜌𝑖𝑗⁄ ) − 𝐶𝑖𝑗 𝑟𝑖𝑗

6⁄  , (3) 

where r is the distance between the pair of ions and A, ρ and C are fitting parameters that depend only on the interacting species. 

The first term is the Born-Mayer potential (𝑈𝑖𝑗
𝐵𝑀). It is short-ranged and was summed only over neighbours within a cut-off radius 
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of 12 Å. The second term is the Van der Waals potential (𝑈𝑖𝑗
𝑉 ) that acts only on the polarizable ions O2- and Cl-. 𝑈𝑖𝑗

𝑉  and 𝑈𝑖𝑗
𝐸  are 

summed according to the Ewald method. Therefore, for Li3OCl, 𝑈𝑙𝑎𝑡  is given by 

𝑈𝑙𝑎𝑡 = 𝑈𝑂
𝐻 + 𝑈𝐶𝑙

𝐻 +
1

2
∑(3𝑈𝐿𝑖,𝑗

𝐸 + 𝑈𝑂,𝑗
𝐸 + 𝑈𝐶𝑙,𝑗

𝐸 )

𝑗

 

+
1

2
∑ (3𝑈𝐿𝑖,𝑗

𝐵𝑀 + 𝑈𝑂,𝑗
𝐵𝑀 + 𝑈𝐶𝑙,𝑗

𝐵𝑀)
𝑗

𝑟≤12 Å 

+
1

2
∑(𝑈𝑂,𝑗

𝑉 + 𝑈𝐶𝑙,𝑗
𝑉 )

𝑗

. 
(4) 

Here, the subscripts “Cl” and “O” designate the Cl- and O2- ions inside the unit cell and “Li” represents one of the three symmetry-

equivalent Li+ ions inside the unit cell. The sums are over pairwise interactions, thereby divided by 2 to correct for double counting. 

The electrostatic and Van der Waals sums extend to infinity in the Ewald framework. 

 𝐹𝑣𝑖𝑏  , in eqn. (1), is calculated within the quasi-harmonic approximation, in which the cell parameters are adjusted to minimize 

the vibrational Gibbs energy, 𝐺𝑣𝑖𝑏 , while the lattice vibrations are assumed to be harmonic. Thus, 𝐹𝑣𝑖𝑏  can be derived from the 

harmonic vibrational partition function, 𝑍𝑣𝑖𝑏 . The starting point is the partition function for a single quantum harmonic oscillator 

of phonon mode m and wavevector k,2  

𝑧𝒌𝑚 =
exp (−

𝛽ℎ𝜈𝒌𝑚
2

)

1 − exp(−𝛽ℎ𝜈𝒌𝑚)
 ,  

(5) 

where 𝛽 = (𝑘𝐵𝑇)−1. Each unit cell of the crystal contributes with 3n vibrational modes, where n is the number of ions in the unit 

cell. Thus, we define 𝑧𝒌 = ∏ 𝑧𝒌𝑚𝑚  as the vibrational partition function of the unit cell, which has to be averaged over all the 

wavevectors of the Brillouin zone to yield the total vibrational partition function 

𝑍𝑣𝑖𝑏 =  ∏(𝑧𝒌)𝑤𝒌

𝒌

, (6) 

where the sum over the weights 𝑤𝒌 is equal to 1. This leads to: 

𝐹𝑣𝑖𝑏 = −
1

𝛽
ln(𝑍𝑣𝑖𝑏) = ∑ 𝑤𝒌 {

ℎ𝜈𝒌𝑚

2
+

1

𝛽
ln[1 − exp(−𝛽ℎ𝜈𝒌𝑚)]}

𝒌,𝑚

 . (7) 

𝐹𝑣𝑖𝑏  can also be expressed in terms of the vibrational internal energy/f.u. (𝑈𝑣𝑖𝑏), the entropy/f.u. (𝑆𝑣𝑖𝑏), and the temperature (T) 

as 𝐹𝑣𝑖𝑏 = 𝑈𝑣𝑖𝑏 − 𝑇𝑆𝑣𝑖𝑏 , with 𝑈𝑣𝑖𝑏  and 𝑆𝑣𝑖𝑏  given by:    

𝑈𝑣𝑖𝑏 = ∑ 𝑤𝒌 [
ℎ𝜈𝒌𝑚

2
+

ℎ𝜈𝒌𝑚

exp(𝛽ℎ𝜈𝒌𝑚) − 1
]

𝒌,𝑚

 ; (8) 

𝑆𝑣𝑖𝑏 = 𝑘𝐵 ∑ 𝑤𝒌 {
𝛽ℎ𝜈𝒌𝑚

exp(𝛽ℎ𝜈𝒌𝑚) − 1
− ln[1 − exp(−𝛽ℎ𝜈𝒌𝑚)]}

𝒌,𝑚

 . (9) 

A 4×4×4 Monkhorst−Pack3 k-point grid was used to calculate the vibrational properties. Defining the total Helmholtz energy/f.u. 

as 𝐹0 = 𝑈𝑙𝑎𝑡 + 𝑈𝑣𝑖𝑏 − 𝑇𝑆𝑣𝑖𝑏, 𝐺0 can be expressed as: 

𝐺0 = 𝐹0 + 𝑝𝑉. (10) 

In equilibrium, the internal pressure 

𝑝𝑖𝑛𝑡 = −𝜕𝐹0/𝜕𝑉 (11) 

must balance the external pressure 𝑝.  

 The algorithm for 𝐺0 minimization goes as follows. First, the equilibrium 𝐹0 relative to the internal coordinates (those of cores 

and shells) is calculated for different sets of cell parameters to obtain 𝑝𝑖𝑛𝑡 . Every 𝐹0 evaluation requires a phonon calculation. Next, 

𝑉 is varied isotropically until 𝑝𝑖𝑛𝑡 = 𝑝. Then, 𝐺0 is minimized with respect to the unit cell parameters while internal coordinates 

are kept at minimum internal energy positions (ZSISA approximation).2,4–6 

 We used the Mott-Littleton method to calculate defect Gibbs energies. It consists of dividing the crystal into regions. The defect 

lies in the inner spherical region (region 1), where all interactions are calculated explicitly, and relaxations are constrained only by 

the crystal symmetry. It is surrounded by a thick spherical shell (region 2a) where all interactions are also calculated explicitly, but 

relaxations follow harmonic displacements. In the remainder of the crystal (region 2b), only the polarization of sublattices as due 
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to the charged defect is taken into account in the defect Gibbs energy. Here, the inner and outer limits of region 2a were 16.5 Å e 

18.5 Å. For each calculation, we centred region 1 at the average of all defect positions. Contrary to supercell calculations, where 

the perfect cell energy must be subtracted from the defect-containing one to obtain the defect energy, the output energies here 

were already the defect energies. 

 Gibbs energies of migration were calculated by subtracting the defect’s Gibbs energy of formation from the Gibbs energy at 

saddle point along the migration path. Each point of the Gibbs energy barrier profiles was obtained by constraining one of the 

migrating ion coordinates and letting all remaining coordinates in the Mott-Littleton regions 1 and 2a to relax. 

 All Buckingham potential and atomic model parameters used here were derived by Mouta et al. 7 and are reproduced in Table 

S1 and Table S2, respectively.  

 

Table S1. Buckingham potential parameters. 

Interaction A (eV) 𝜌 (Å) C (eVÅ6) Ref. 
O2- – O2- 22764.3000 0.14900 13.185 7 
Cl- – Cl- 5145.2755 0.30660 20.523 7 
Li+ – O2- 433.2627 0.31384 0.000 7 
Li+ – Cl- 421.0366 0.33640 0.000 7 
Li+ – Li+ 360.5269 0.16098 0.000 7 

Table S2. Parameters for the shell and rigid ion models. 

Ion k (eV/ Å2) Y (eV)  X (eV) Ref. 
Li+ - - 1.000 7 
O2- 593.716 -2.183 0.183 7 
Cl- 39.444 -2.535 1.535 7 

 

 

2 Further details on long- and short-range anion transport  
2.1 On the discontinuity in the migration barrier via Path L3 

 The discontinuity around the fractional coordinate x = 0.11 of the migrating O2- ion, evinced in Fig. S1, is due to a sudden change 

in the local environment around the O2- ion. At x = 0.10, two Cl- and one of the Li+ ions are closer to the O2- ion, resulting in higher 

interaction energy. On the other hand, at x = 0.12 these three ions move away, thereby decreasing their interaction energy with 

the migrating O2-. 
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Fig. S1. Barrier profile discontinuity for the O2- ion migration through path L3. The insets shown the local configurations for x = 0.10 (left) and x = 0.12 (right).  

 

2.2 Vacancy-assisted reduction of the Gibbs energy of Cl- migration (via Path L1a) 

 Since Li+ vacancies co-exist with Cl- vacancies, we also studied the latter's migration in the vicinity of the former. The Gibbs 

energy of migration via this path, termed Path L1a in Fig. 1 of the main text, is slightly reduced as compared to Path L1. The Gibbs 

energy barrier profile and selected relaxed configurations are shown in Fig. S2. 

 

 

Fig. S2. Path L1a and its Gibbs energy barrier profile. This path is identical to L1, except for the presence of a Li+ vacancy. 

2.3 A fourth long-range transport mechanism 

 In principle, there is also a fourth known mechanism for cation migration in perovskites that could have an anion analogue in 

anti-perovskites, in which A- and B-site ion vacancies diffuse together, as Kilo et al. have shown with molecular dynamics 

simulations for Sr- and Mg-doped LaGaO3 (i.e., La1-xSrxGa1-yMgyO3-z, usually termed LSGM).8 However, the analogue mechanism in 

Li3OCl would require the existence of both Cl- and O2- vacancies in significant concentrations, and no energetically favourable 

defect can form them simultaneously in Li3OCl. Therefore, we did not explore this migration mechanism here. 
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Fig. S3. Crystal structure of the Li3OCl, depicting the three possible Li+ ion positions in the cubic unit cell (A, B and C) and all their nearest-neighbour Li+ ion positions. Mobilities are 

calculated for one Li+ vacancy in either of the three positions. Cl- ions were omitted for the sake of clarity. 

 

3 On the calculation of vacancy mobilities in Li3OCl 
3.1 Mean electrical mobility of Li+ vacancies 

The electrical mobility of a Li+ vacancy, 𝜇𝐿𝑖 , depends on how efficiently it can move in the direction of the external electric field. 

As such, it is position-dependent. One can, however, calculate its mean value, ⟨𝜇𝐿𝑖⟩, by averaging over all possible Li+ vacancy 

positions inside the unit cell, as done next. Another option would be to derive the atomistic expression for diffusivity and then 

using the Einstein relation to obtain the mean mobility. For instance, for the case discussed in this section, where the crystal 

structure has cubic symmetry and all vacancy positions correspond to the same Wyckoff site, this second approach would reduce 

the calculation effort by two-thirds. However, we chose the first approach as a groundwork for future studies where the symmetry 

is not cubic, or vacancies distribute themselves among different Wyckoff sites. 

Let us consider the crystal structure of Li3OCl, as shown in Fig. S3. The unit cell of Li3OCl contains three Li+ ions, which is the 

number of Li+ ions per formula unit of the compound. Although there are six Li+ ions, one on each face of the cubic cell, only three 

belong to a given unit cell whereas the other three belong to the neighbouring cells. Therefore, to obtain ⟨𝜇𝐿𝑖⟩, we must first 

calculate the mobility of the Li+ ion vacancies associated with each of the three representative positions in the central unit cell in 

Fig. S3, namely A, B, and C. 

We start by considering the mobility of a Li+ ion vacancy at position A. Such vacancy can move to any of the eight nearby Li+ ion 

positions, labelled from B to E and from G to H in Fig. S4. By symmetry, the energy of migration from A to any one of them is the 

same. Therefore, the defect mobility is given by 9,10  

𝜇𝐴 =
|𝑒|𝜈𝛽

2
∑|𝜌𝐴→𝛾|

2
𝑒𝑥𝑝(−𝛽𝐺𝐴→𝛾

𝑚 )

𝛾

=
|𝑒|𝜈𝛽

2
𝑒𝑥𝑝(−𝛽𝐺𝐿𝑖

𝑚) ∑|𝜌𝐴→𝛾|
2

𝛾

. (12) 

In the equation above, |𝑒| is the proton charge (charge of a Li+ ion vacancy), 𝜈 is the attempt frequency, 𝐺𝐿𝑖
𝑚  is the Gibbs energy of 

migration of a Li+ vacancy, 𝛽 = 𝑘𝐵𝑇, and 

|𝜌𝐴→𝛾| = |(𝑟𝛶 − 𝑟𝐴) ⋅ 𝐸| (13) 

is the displacement distance along the electric field direction 𝐸, which is assumed to be along the crystal axis �⃗⃗� – without loss of 

generality – and (𝑟𝛶 − 𝑟𝐴) is the displacement vector of migration from 𝐴 to a neighbouring site 𝛾.  
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Fig. S4. Scheme utilized to calculate the mobility of a Li+ ion vacancy (not shown) at position A, based on the eight neighbouring positions to which such vacancy can hop, namely B, 

C, D, E, G, H, I, and J. 

 The displacement vector of migration from 𝐴 to either C, E, G or I is perpendicular to the electric field, therefore 

|𝜌𝐴→𝐶|2 = |𝜌𝐴→𝐸|2 = |𝜌𝐴→𝐺|2 = |𝜌𝐴→𝐼|2 = 0. (14) 

The vacancy displacement distance along 𝐸 from A to either B, D, H or J is half a lattice parameter, leading to 

|𝜌𝐴→𝐵|2 = |𝜌𝐴→𝐷|2 = |𝜌𝐴→𝐻|2 = |𝜌𝐴→𝐽|
2

=
𝑎2

4
 . (15) 

Summing over all eight positions, we get 

∑|𝜌𝐴→𝛶|2

𝑗=𝛶

=
𝑎2

4
+

𝑎2

4
+

𝑎2

4
+

𝑎2

4
= 𝑎2. (16) 

Substituting the above results into eqn. (12), we obtain the mobility of a Li+ vacancy at the position A: 

𝜇𝐴 =
|𝑒|𝜈𝛽𝑎2

2
𝑒𝑥𝑝(−𝛽𝐺𝐿𝑖

𝑚). (17) 
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Fig. S5. Scheme utilized to calculate the mobility of a Li+ ion vacancy (not shown) at position B, based on the eight neighbouring positions to which such vacancy can hop, namely A, 

C, E, F, K, L, M, and N. 

Next, we consider the mobility of a Li+ ion vacancy at position B. Such vacancy can move to any of the eight nearby Li+ ion 

positions shown in Fig. S5. Since any of these displacements correspond to a migration distance of half lattice parameter along the 

electric field direction, we have  

|𝜌𝐵→𝛶|2 =
𝑎2

4
; 𝛶 = 𝐴, 𝐶, 𝐸, 𝐹, 𝐾, 𝐿, 𝑀, 𝑁. (18) 

Summing over all eight positions, we get 

∑|𝜌𝐵→𝛶|2

𝑗=𝛶

= 8 (
𝑎2

4
) = 2𝑎2 (19) 

Substituting the above result into eqn. (12), we obtain the following expression for the of a Li+ vacancy at the position B: 

𝜇𝐵 = |𝑒|𝜈𝛽𝑎2𝑒𝑥𝑝(−𝛽𝐺𝐿𝑖
𝑚) (20) 

For a Li+ ion vacancy at position C, we have the scheme shown in Fig. S6. We have contributions of half lattice parameter for 

projected distances from C to B, D, P and R positions,  

|𝜌𝐶→𝛶|2 =
𝑎2

4
;    𝛶 = 𝐵, 𝐷, 𝑃, 𝑅, (21) 

and zero otherwise,  

|𝜌𝐶→𝛶|2 = 0;    𝛶 = 𝐴, 𝐹, 𝑂, 𝑄. (22) 

Therefore, the mobility of a Li+ vacancy at the position C is given by: 

𝜇𝐶 =
|𝑒|𝜈𝛽𝑎2

2
𝑒𝑥𝑝(−𝛽𝐺𝐿𝑖

𝑚). (23) 

Now we can finally calculate the mean mobility of Li+ vacancies:  

⟨𝜇𝐿𝑖⟩ =
𝜇𝐴 + 𝜇𝐵 + 𝜇𝐶

3
 ; (24) 
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⟨𝜇𝐿𝑖⟩ =
2|𝑒|𝜈𝛽𝑎2

3
𝑒𝑥𝑝(−𝛽𝐺𝐿𝑖

𝑚)  . (25) 

 
Fig. S6. Scheme utilized to calculate the mobility of a Li+ ion vacancy (not shown) at position C, based on the eight nearby positions to which such vacancy can hop, namely A, B, D, 

F, O, P, Q, and R. 

 

3.2 Electrical mobility of Cl- vacancies 

There is only one possible position that a Cl- vacancy can occupy in a unit cell (position A, in Fig. S7), so no average is needed 

to calculate its electrical mobility, 𝜇𝐶𝑙. Although there are seven other positions in the unit cell’s corners, they belong to the 

neighbouring cells. Therefore, to obtain 𝜇𝐶𝑙, suffices to calculate the Cl- vacancy mobility at the position A. 

As we did for Li+ vacancies, the starting point is eqn. (12). Here also, all the Gibbs energies of migration are the same, and the 

electric field is oriented in the same direction, and orientation, as the lattice parameter �⃗⃗�. Thus, 

𝜇𝐴 =
|𝑒|𝜈𝛽

2
𝑒𝑥𝑝(−𝛽𝐺𝐶𝑙

𝑚) ∑(𝜌𝐴→𝛾)
2

𝛾

 , (26) 

where 𝐺𝐶𝑙
𝑚  is the Gibbs energy of migration of a Cl- vacancy via Path L1 (as discussed in the main text). The only two migrations 

that lead to a nonzero displacement distance in the electric field's direction are from A to either B or D, both a lattice parameter-

long. Therefore, the electrical mobility of a Cl- vacancy is 

𝜇𝐴 = |𝑒|𝜈𝛽𝑎2𝑒𝑥𝑝(−𝛽𝐺𝐶𝑙
𝑚) ; (27) 

𝜇𝐶𝑙 = |𝑒|𝜈𝛽𝑎2𝑒𝑥𝑝(−𝛽𝐺𝐶𝑙
𝑚)  . (28) 
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Fig. S7. Scheme utilized to calculate the mobility of a Cl- ion vacancy (not shown) at position A, based on the six nearby positions to which such vacancy can hop, namely B, C, D, E, F 

and G. 

 

4 Probability of a jump via Path S1 before the jump via Path S2 reverses 

 After the first migration, the probability that neither the second migration nor the reversal of the first one happens for 𝑛 − 1 

attempts, with the second migration happening in the 𝑛th attempt, is 

𝑝(𝑛) = (1 − 𝑝𝑟)𝑛−1(1 − 𝑝2)𝑛−1(1 − 𝑝𝑟)𝑝2 = (1 − 𝑝𝑟)𝑛(1 − 𝑝2)𝑛−1𝑝2, (29) 

where for each attempt, 

𝑝𝑟 = exp (−𝛽𝐺𝑆2𝑟
𝑚 ) (30) 

is the probability of reversal and  

𝑝2 = exp (−𝛽𝐺𝑆1
𝑚), (31) 

is the probability of the second migration happening. Here, 𝐺𝑆2𝑟
𝑚  is the Gibbs energy of migration via Path S2, but in the reverse 

direction.  

 The number of attempts made in 𝑡 seconds is 𝑁 = 𝑡𝜈, where 𝜈 is the attempt frequency (taken as 10 THz here). Thus, the 

probability of the second migration happening in 𝑁 or fewer attempts without reversal is  

𝑝(𝑛 ≤ 𝑡𝜈) =
𝑝2

1 − 𝑝2
∑[(1 − 𝑝𝑟)(1 − 𝑝2)]𝑛

𝑡𝜈

𝑛=1

 

≈
𝑝2(1 − 𝑝𝑟)

1 − (1 − 𝑝𝑟)(1 − 𝑝2)
 .  

(32) 

The latter approximation takes into account that for 𝑡 of the order of seconds, 𝑡𝜈 → ∞, and we obtain an infinite sum of a geometric 

series. It is worth noting that this result does not depend on 𝑡. This reflects the fact that the larger 𝑛 is, the smaller 𝑝(𝑛) is, in a 

way that the series has already reached convergence for times of the order of seconds. 

 Assuming the Gibbs energy of migration of a Cl- ion via Path S1 does not change much due to the 𝑂𝐶𝑙
′  antisite (formed after the 

O2- migration via Path S2), we can estimate 𝑝(𝑛 ≤ 𝑡𝜈) at 550 K from 𝐺𝑆1
𝑚(550 𝐾) = 0.628 eV and 𝐺𝑆2𝑟

𝑚 (550 𝐾) = 0.068 eV as 

approximately 6×10-6. 

5 On the calculation of concentration profiles 
We assume a spherical grain (of diameter 2𝑅), in accord with experimental evidence.11 Also, since Li3OCl has cubic symmetry, 

diffusion is isotropic (in the absence of external fields). Thus, the diffusivity 𝐷 is scalar and the diffusion equation writes: 
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1

𝐷

𝜕𝑐(𝑟, 𝑡)

𝜕𝑡
= 𝛻2𝑐(𝑟, 𝑡) =

𝜕2𝑐(𝑟, 𝑡)

𝜕𝑟2
+

2

𝑟

𝜕𝑐(𝑟, 𝑡)

𝜕𝑟
, (33) 

where 𝑐(𝑟, 𝑡) is the concentration of vacancies (number of vacancies per unit of volume) at a distance 𝑟 from the centre of the 

grain at time 𝑡.  

 Due to the grain’s spherical symmetry, we assume that the concentration has the form 

𝑐(𝑟, 𝑡) = 𝛾 + 𝑇(𝑡)𝑅(𝑟), (34) 

where 𝛾 is a constant; 𝑇(𝑡) and 𝑅(𝑟) are functions of time and position, respectively. This assumption allows us to separate the 

diffusion equation in 

1

𝐷

1

𝑇(𝑡)

𝜕𝑇(𝑡)

𝜕𝑡
= −𝑘2 (35) 

and 

1

𝑅(𝑟)

𝜕2𝑅(𝑟)

𝜕𝑟2
+

2

𝑟𝑅(𝑟)

𝜕𝑅(𝑟)

𝜕𝑟
= −𝑘2 , (36) 

with general solutions  

𝑇(𝑡) = 𝑇(0)𝑒−𝑘2𝐷𝑡 (37) 

and 

𝑅(𝑟) = 𝐴
𝑠𝑖𝑛(𝑘𝑟)

𝑟
+ 𝐵

𝑐𝑜𝑠 (𝑘𝑟)

𝑟
 . (38) 

 By taking a linear combination of the possible solutions and enforcing that the overall solution must be finite at 𝑟 = 0, we get: 

𝑐(𝑟, 𝑡) = 𝛾 + ∑ 𝐹𝑛

∞

𝑛=1

𝑠𝑖𝑛(𝑘𝑛𝑟)

𝑟
𝑒−𝑘𝑛

2𝐷𝑡 (39) 

We determined the coefficients 𝐹𝑛, 𝑘𝑛, and 𝛾 by the boundary and initial conditions of the problem: 

• Final: 

𝑐(𝑟, ∞) = 𝑐𝑠𝑢𝑟𝑓  (40) 

• Initial: 

𝑐(𝑟, 0) = {
𝑐𝑠𝑢𝑟𝑓 , 𝑟 = 𝑅

    𝑐0, 0 ≤ 𝑟 < 𝑅
 (41) 

• Boundary: 

{

𝑐(𝑅, 𝑡) = 𝑐𝑠𝑢𝑟𝑓

  
ⅆ𝑐(𝑟, 𝑡)

ⅆ𝑟
|

𝑟=0

= 0
 (42) 

In the equations above, 𝑐0 and 𝑐𝑠𝑢𝑟𝑓  are the initial concentration in the grain interior and the surface concentration, respectively. 

Such conditions lead to the following solution: 

𝑐(𝑟, 𝑡) = 𝑐𝑠𝑢𝑟𝑓 +
2(𝑐0 − 𝑐𝑠𝑢𝑟𝑓)𝑅

𝑟𝜋
∑

(−1)𝑛+1

𝑛

∞

𝑛=1

𝑠𝑖𝑛 (
𝑛𝜋𝑟

𝑅
) 𝑒−𝑛2𝜋2𝐷𝑡 𝑅2⁄  . (43) 

By making explicit the temperature dependence through 𝐷, we have:  

𝑐(𝑟, 𝑡, 𝑇) = 𝑐𝑠𝑢𝑟𝑓 +
2(𝑐0 − 𝑐𝑠𝑢𝑟𝑓)𝑅

𝑟𝜋
∑

(−1)𝑛+1

𝑛

∞

𝑛=1

𝑠𝑖𝑛 (
𝑛𝜋𝑟

𝑅
) 𝑒−𝑛2𝜋2𝐷(𝑇)𝑡/𝑅2

 . (44) 

 We can convert 𝑐 into 𝜂 – number of vacancies per unit formula – using the expression 
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𝜂 = 𝑎3𝑐 , (45) 

since there is only one unit formula per unit cell. Here, 𝑎 is the temperature-dependent lattice parameter of the cubic unit cell.  
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