
A. Algebraic diagrammatic construction

Originally, the so-called direct ADC procedure was developed within the Green’s func-

tion (GF) formalism [1, 2]. It provides a framework to develop a hierarchy ADC(n) of

approximations for the one-electron propagator, which are complete through the order n of

the perturbation theory (PT) but include infinite partial summations needed to recover the

correct simple poles analytical structure of the propagator, which is lost in the traditional

diagrammatic approach. The method can be readily applied to construct multi-electron GF

[3, 4] or the polarization propagator [5, 6]. A detailed and pedagogical account on ADC and

related many-body methods is available in the excellent recent book by J. Schirmer [7]. In

the present work, we employ the alternative ISR-ADC formulation [8, 9], which we describe

for the specific case of single ionization.

The approach can be conveniently explained in comparison with the configuration inter-

action (CI) expansion [10], which represents the most straightforward approach to describe

electronic correlation in quantum chemistry. Consider the Hartree-Fock (HF) ground state

|Φ0〉 of the N -electron system. Using the so-called physical excitation operators,{
ĈJ

}
=
{
ck; c†ackcl, k < l; c†ac

†
bcjckcl, j < k < l; . . .

}
, (1)

a complete orthonormal set of (N−1)-electron basis functions (also called HF configurations)

can be derived as

|ΦJ〉 = ĈJ |Φ0〉. (2)

The indices j, k, l, . . . and a, b, . . . correspond to the occupied and virtual HF orbitals,

respectively. It follows that the basis functions are naturally classified as one-hole (1h),

two-hole-one-particle (2h1p) and so on according to the degree of excitation. The common

notation is that J denotes individual configuration while [J ] = µ stands for the whole

µh− (µ− 1)p excitation class.

The basis set (2) is used in the CI method for expansion of the correlated (N−1)-electron

wave functions |Ψ(N−1)
q 〉 (q denoting the complete set of quantum numbers specifying the

ionized state). The principal drawback of such a direct approach is slow convergence and,

once truncated after some specific excitation class [J ], lack of size consistency. The slow

convergence is rooted in the fact that the HF configurations are uncorrelated and, therefore,

every ionized state is constructed ”from scratch”. To improve, ISR-ADC employs a basis
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set of the so-called correlated excited states (CESs),

|Ψ0
J〉 = ĈJ |Ψ0〉, (3)

where |Ψ0〉 is the exact N -electron ground state. The intuitive idea underlying the use of

CESs is that the removal of an electron affects the correlation with respect to the initial N -

electron ground state but not totally alter it. Therefore, the information on the correlation

in the N -electron system conveyed by the CESs should result in faster convergence of the

expansion of the (N − 1)-electron wave functions [7].

In contrast to the HF configurations (2), the CESs (3) are not orthonormal. It is the

specific excitation class orthogonalization (ECO) procedure that leads to an orthonormal

basis of intermediate states (ISs) |Ψ̃J〉, providing the sought-after size-consistent and fast-

convergent expansion of |Ψ(N−1)
q 〉. ECO is an iterative process consisting of Gram-Schmidt

orthogonalization between different excitation classes and symmetric orthogonalization of

the resulting precursor states within each excitation class. For more details, see Refs. [7, 11].

Using the complete manifold of excitation operators (1), the basis of ISs provides an exact

representation of the secular matrix (shifted Hamiltonian with E0 being the exact neutral

ground state energy),

MIJ = 〈Ψ̃I |Ĥ − E0|Ψ̃J〉 (4)

as well as of the (N − 1)-electron wave functions,

|Ψ(N−1)
q 〉 =

∑
J

Yq,J |Ψ̃J〉. (5)

A practical computation scheme is obtained by replacing the exact neutral ground state |Ψ0〉

by its PT expansion for the neutral ground state through the order n,

|Ψ0〉 = |Φ0〉+ |Ψ(1)
0 〉+ · · ·+ |Ψ(n)

0 〉+O(n+ 1), (6)

which in turn leads naturally to PT expansions of the ISs, the ground state energy E0,

and the matrix elements MJI of Eq. (4). Similarly, the wave function expansion (5) has to

be truncated after some specific excitation class, restricting the active configuration space.

Ionization energies and the corresponding (N − 1)-electron eigenstates are then obtained by

diagonalising the resulting finite matrix M .

One of the defining properties of the ADC method are the canonical order relations

(COR), according to which the PT expansion of the off-diagonal ([I] 6= [J ]) matrix elements
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(SI) 1h 2h1p

1h M
(0,2)
11 M

(1)
12

2h1p M
(1)
21 M

(0,1)
22

(DI) 2h 3h1p

2h M
(0,1,2)
11 M

(1)
12

3h1p M
(1)
21 M

(0,1)
22

(TI) 3h 4h1p

3h M
(0,1,2)
11 M

(1)
12

4h1p M
(1)
21 M

(0,1)
22

TABLE I. Block structures of the ADC(2)x secular matrices M for single (SI, [2]), double

(DI, [3]), and triple (TI, [4]) ionization. The upper indices give the PT orders included, i.e.,

M
(0,2)
11 = M

(0)
11 + M

(2)
11 , with the zeroth order being given by the HF orbital energies.

of the secular matrix follow the general rule

MIJ ∼ O(|[I]− [J ]|). (7)

COR dictates at which order and excitation class the expansions (6) and (5) have to be

truncated, respectively, to obtain ionization energies consistent through the required PT

order. If |Ψ(N−1)
q 〉 is an eigenstate belonging to the excitation class [I] (i.e., its expansion is

dominated by class [I] ISs), truncation of the configuration space after the excitation class

[J ] > [I] introduces an error of order 2(J + 1 − I). Specifically for main 1h states (I = 1)

this means an error of order 2J , which can be compared to an error of the order (J + 1) for

the slower converging CI expansion.

The most widely used ISR-ADC scheme is the extended second-order scheme [ADC(2)x,

ADC(2)-E]. The configuration space is spanned by the 1h and 2h1p ISs, and the 1h/1h block

of the secular matrix contains corrections up to the second-order of PT while the 1h/2h1p

and 2h1p/2h1p blocks only up to the first order. At this level, the energies of the 1h-like

states are determined through the second-order while those of the 2h1p-like states through

the first order of PT only. To remedy this shortcoming, we have recently introduced the

ADC(2,2) approximation [11] which, through the inclusion of the 3h2p excitation class and

appropriate order structure of the resulting secular matrix M (see Tab. I in Ref. [11]), allows

for a balanced description of both 1h and 2h1p-like states through second order of PT.

ISR-ADC schemes for multi-electron Green’s functions are derived fully analogously using

an appropriate manifold of excitation operators in place of Eq (1). Specifically, for double

ionization, the ADC(2)x schemes comprise 2h and 3h1p classes of ISs, derived from the

3



manifold {
ĈJ

}
=
{
ckcl, k < l; c†ackclcm, k < l < m

}
, (8)

and similarly for triple ionization. The block structures of the three ADC(2)x schemes are

summarized in Tab. I. For each charge state, the working equations for the secular matrix

elements are derived and implemented independently. Using the same level of the ADC

scheme ensures consistency of the calculated ionization potentials, which is essential for the

correct determination of the energy windows and would be difficult to achieve using any

other methodology.

In the present work, the ionization potentials were obtained by block-Lanczos diago-

nalization [12] of the secular matrices. The procedure is initialized with a block of starting

vectors covering the whole main subspace, e.g., all 1h ISs for single ionization. Iterative mul-

tiplication of the starting block by the Hamiltonian matrix generates the so-called Krylov

space. Corresponding smaller, band-diagonal representation of the Hamiltonian is then eas-

ily diagonalized to obtain approximate eigenvalues of the original matrix. In the present

work, convergence in the spectral regions of interest was typically reached after 100-150

iterations for the inner-valence and core regions, less than 50 iterations are usually sufficient

to accurately determine the lowest triple ionization potential.
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