Electronic Supporting Information (ESI) for

Phase transition-induced changes in the Raman properties of DMSO/benzene

binary system

Guannan Qu,^{*a,c*} Rasheed Bilal,^{*a*} Minsi Xin,^{*a*} Zhong Lv,^{*a*} Guangyong Jin,*^{*a,b*} Yong Tan,^{*a*} Zhihai Yao,^{*a*} and Hongxing Cai,^{*a,c*}

^a School of Science, Changchun University of Science and Technology, Changchun, 130022, China.

- ^b Jilin Key Laboratory of Solid-State Laser Technology and Application, Changchun University of Science and Technology, Changchun, 130022, China.
- ^c Key laboratory of Jilin Province for Spectral Detection Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

Fig. S1. The geometry of DMSO optimized by the DFT B3LYP/6-311++G(d,p) level of theory: (a) atoms with labels (b) atoms with charges and bond lengths.

Fig. S2. The Raman vibration modes of DMSO arising from the calculated mode and displacement vectors are indicated by arrows. Nuclear vibration: (a) 303 cm⁻¹, (b) 330 cm⁻¹, (c) 379 cm⁻¹, (d) 666 cm⁻¹, (e) 698 cm⁻¹, (f) 953 cm⁻¹, (g) 1045 cm⁻¹, (h) 1425 cm⁻¹.

Fig. S3. The Raman vibrational forms of DMSO arising from the calculated mode and displacement vectors are indicated by arrows. Nuclear vibration: (a) 2895 cm⁻¹, (b) 2905 cm⁻¹, (c) 2982 cm⁻¹, (d) 2996 cm⁻¹.