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Encoding of the molecular fragments

(a) (b)

Figure S. 1. (a). Encoding of various kinds of chemical bonds among multi-level fragments
by F-GCN; (b). Encoding of C−C bonds among multi-level fragments by F-GCN.

Table 1: The list of the applied molecules for Figure 1a.

Molecule (expressed in SMILES) Bonding type Bonding site 1 Bonding site 2
CC(C)(C)c2cccc(c1cccc(C(C)(C)C)c1O)c2O C−C 8 9
CCCC(C)CC C−C 2 3
C2=C(c1ccccc1)Cc3ccccc23 C−H 8 N.A
CC(C)(C)CC3c1ccccc1c2ccccc23 C−H 5 N.A
CC1(C)C=C(Cl)C(C)(C)N1O O−H 10 N.A
CC(=O)c1ccc(O)cc1 O−H 7 N.A
CN(C)Cc1ccccc1 C−N 0 1
BrCc1ccccc1 C−Br 0 1
FC(F)(F)c1ccccc1Cl C−Cl 9 10

a) The experimental BDEs were obtained from iBond 2.0 databank;1 the SMILES formulas
were processed by RDKit package.2
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Table 2: The list of the applied molecules for Figure 1b.

Molecule (expressed in SMILES) Bonding type Bonding site 1 Bonding site 2
C/C=C C−C 2 3
ClC(Br)C(Cl)Br C−C 1 3
c4ccc(C(c1ccccc1)(c2ccccc2)c3ccccc3)cc4 C−C 4 5
C=Cc1ccc(CC)cc1 C−C 6 7
C=CCCc1ccccc1 C−C 2 3
FC(F)(F)C(F)(F)C(F)(F)F C−C 1 4
NCC1CCCCC1 C−C 1 2
CN(C)Cc1ccccc1 C−C 3 4
CCCCC(C)(C)C C−C 3 4
C=CCC(C)C C−C 2 3
CCCCC(C)C C−C 2 3
CNCC(=O)O C−C 2 3
CCC(C)CO C−C 2 4
CC(=O)c1ccccc1 C−C 0 1
CC(C)(C)c2cccc(c1cccc(C(C)(C)C)c1O)c2O C−C 8 9
CC(C)Cc1ccccc1 C−C 1 3
COC(=O)C(F)(F)F C−C 2 4
CCCCCCC=O C−C 5 6
c2ccc(c1ccccc1)cc2 C−C 3 4
CCCCCCCCC C−C 3 4
NCc1cnccn1 C−C 1 2
CC(C)(CN)c1ccccc1 C−C 1 5
CCCC(C)CC C−C 2 3
CCCCCCC=O C−C 4 5
C=CC(C)(C)C C−C 1 2
C=CCC(C)C C−C 1 2
F/C(F)=C(F)(F)=C(F) C−C 3 5
COC(=O)CCl C−C 2 4
C=CCCCC C−C 1 2

a) The experimental BDE data were obtained from iBond 2.0 databank;1 the SMILES
formulas were processed by RDKit package.2
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The architecture of F-GCN

Our development was based on graph convolutional neural network (GCN). First, starting

from the target bond, a series of molecular fragments were generated, as depicted in the Fig.

1 of the main text. The two atoms connected by the target bond make up the first-level

fragment. The second level fragment consists of the first-level fragment and the atoms which

share covalent bonds with the atoms in the first level. The following fragments are generated

following this manner. There are up to 9 levels of fragments until the whole molecule is

included. Then these fragments will be encoded by separate GCNs, and a list of bits can

be obtained, indicating the fingerprints of fragmentary graphs. And all the fingerprinted

fragments contain the original bond and its chemical environment at different levels.

The fragments were solved by RDkit that is a powerful tool for information extrac-

tion. The bond type and bond order were recorded for refined learning. At the same time,

the atomic descriptors of the two bonded atoms were also included, which compose a 60-

dimension vector. The selected atomic descriptors include minimum ring size, CrippenlogP,

atomic number, hybridization state, aromatic, Gasteiger charge, number of connected hy-

drogen, proton donor, proton acceptor, element symbol, CrippenMR, TPSA, LaASA and

etc. The selected inter-atomic descriptors include bond type, bond length and etc.

In the readout stage, all the mentioned information can be combined to predict the

bond dissociation energy. The molecular and fragmentary graphs were generated within the

modified TencentAlchemyDataset. The architecture of F-GCN was designed with reference

to SchNet. The neural network was realized within the DGL framework and Pytorch 1.5

with CUDA 10.1. The model was trained on a Linux machine running Ubuntu 20.04 with a

NVIDIA 1080 TI graphical processing unit.

To train the model, ADAM optimizer with a initial learning rate of 0.001 was applied.

The learning rate was scheduled with ReduceLROnPlateau, with parameters: gamma=0.9,

patience=10, min(lr)=0.0001, eps=1e-8.
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Figure S. 2. The plot of averaging loss of F-GCN with epoch.
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The molecular graphs were first transformed into fragments, starting from the target bond, then 
these fragmentary graphs were encoded by independent GCNs. In the readout layer, both atomic 
and inter-atomic descriptors, generated by RDKit, were incoporated with separate weight 
functions to augment the prediction accuracy. Such a architecture is also open to include other 
related descriptors.

Multi-level fragments 

GCNs 

Figure S. 3. The general description of the F-GCN’s workflow, designed for chemical
properties predictions.
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