Supporting Information

Density functional theory study of transition metal single-atom anchored on graphyne as efficient electrocatalyst for nitrogen reduction reaction

Wei Song^a, Kun Xie^d, Jinlong Wang^e, Yongliang Guo^a, Chaozheng He^{b,c*}, Ling

Fu^{f*}

^aSchool of Science, Henan Institute of Technology, Xinxiang, 453003, P.R. China ^bSchool of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, P.R. China

^cInstitute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P.R. China

^dHenan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, P.R. China

^eDepartment of Electronic Communication Engineering, Xinxiang University, Xinxiang, 453003, P.R. China

^fCollege of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, P.R. China

$E_{total}(eV)$	Ti	V	Cr	Mn	Zr	Nb	Мо
H1	-421.31	-422.03	-422.30	-422.67	-421.81	-422.89	-423.02
H2	-419.68	-420.15	-420.38	-420.19	-420.24	-420.70	-420.58
B1	_	—	—	—	—	—	—
B2	_	—	—	—	—	-420.23	—
B3		—	—	—	—	-420.09	-420.38
С	-420.80	—	—	—	-421.51	—	—

Table S1 The total energy (E_{total} in eV) of TM atoms (TM = Ti, V, Cr, Mn, Zr, Nb, Mo) adsorbed on the GY with the different adsorption sites.

Table S2 Binding energy (E_b in eV), distance from TM atoms to GY surface (d in Å), Bader charge for the TM atoms (Q_{TM} in e) and total magnetic moment (M in μ_B) (TM = Ti, V, Cr, Mn, Zr, Nb, Mo). The negative values represent loss of electrons, respectively.

	Ti	V	Cr	Mn	Zr	Nb	Мо
$E_b(eV)$	-4.96	-4.28	-2.64	-3.34	-5.59	-5.56	-4.50
$d(\text{\AA})$	1.36	1.20	0.99	0.76	1.61	1.42	1.28
$Q_{\mathrm{TM}}(e)$	-2.01	-1.68	-1.39	-1.24	-1.61	-1.35	-1.07
$M(\mu_{\rm B})$	0.00	0.60	1.43	2.58	0.00	0.25	0.73

Table S3 Adsorption energy (E_{ads} in eV) of *NH₂ and *NH₃ adsorbed on TM@GY.

Eads	Ti@GY	V@GY	Cr@GY	Mn@GY	Zr@GY	Nb@GY	Mo@GY
*NH ₂	-3.75	-4.17	-3.83	-2.77	-3.98	-4.40	-4.45
*NH ₃	-1.53	-1.68	-1.25	-0.80	-1.44	-1.67	-1.12

Table S4 Adsorption energy (E_{ads} in eV), bond length of Mn-N and N-N (d in Å), total magnetic moment (M in μ_B) and Bader charge (Q in e) of various reaction intermediates adsorbed on Mn@GY via the distal and alternating pathways, and the positive and negative values represent the acquisition and loss of electrons, respectively.

Distal	$E_{ads}(eV)$	$d_{\mathrm{Mn-N}}(\mathrm{\AA})$	$d_{ ext{N-N}}\left(ext{\AA} ight)$	$M\left(\mu_{\mathrm{B}} ight)$	Q (e)
*N-N	-0.33	1.82	1.14	1.02	0.34
*N-NH	-2.27	1.65	1.22	0.00	0.52
*N-NH ₂	-2.79	1.62	1.30	0.00	0.34
*N	-5.45	1.54	_	0.00	0.72
*NH	-4.02	1.60	_	0.00	0.53
*NH ₂	-2.83	1.77	_	0.58	0.32
*NH ₃	-0.87	2.10	—	2.19	-0.11
Alternating	$E_{ads}(eV)$	$d_{\mathrm{Mn-N}}(\mathrm{\AA})$	$d_{\text{N-N}}(\text{\AA})$	$M\left(\mu_{ m B} ight)$	$Q\left(e ight)$
Alternating *N-N	<i>E_{ads}</i> (eV) -0.33	d _{Mn-N} (Å) 1.82	<u>d_{N-N} (Å)</u> 1.14	<i>M</i> (μ _B) 1.02	<i>Q</i> (<i>e</i>) 0.34
Alternating *N-N *N-NH	<i>E_{ads}</i> (eV) -0.33 -2.27	<i>d</i> _{Mn-N} (Å) 1.82 1.65	<i>d</i> _{N-N} (Å) 1.14 1.22	<i>M</i> (μ _B) 1.02 0.00	Q(e) 0.34 0.52
Alternating *N-N *N-NH *NH-NH	E_{ads} (eV) -0.33 -2.27 -1.53	d _{Mn-N} (Å) 1.82 1.65 1.82	d _{N-N} (Å) 1.14 1.22 1.28	<i>M</i> (μ _B) 1.02 0.00 1.03	Q (e) 0.34 0.52 0.31
Alternating *N-N *N-NH *NH-NH *NH-NH2	$ E_{ads} (eV) -0.33 -2.27 -1.53 -2.10 -2.10 $	d _{Mn-N} (Å) 1.82 1.65 1.82 1.76	d_N-N (Å) 1.14 1.22 1.28 1.38	M (μ _B) 1.02 0.00 1.03 0.49	<i>Q</i> (<i>e</i>) 0.34 0.52 0.31 0.15
Alternating *N-N *N-NH *NH-NH *NH-NH2 *NH2-NH2	$E_{ads} (eV)$ -0.33 -2.27 -1.53 -2.10 -1.05	d _{Mn-N} (Å) 1.82 1.65 1.82 1.76 2.08	$ \begin{array}{c} d_{N-N}(\text{\AA}) \\ 1.14 \\ 1.22 \\ 1.28 \\ 1.38 \\ 1.45 \\ \end{array} $	M (μ _B) 1.02 0.00 1.03 0.49 2.05	Q (e) 0.34 0.52 0.31 0.15 -0.10
Alternating *N-N *N-NH *NH-NH *NH-NH2 *NH2-NH2 *NH2	$E_{ads} (eV)$ -0.33 -2.27 -1.53 -2.10 -1.05 -2.83	d _{Mn-N} (Å) 1.82 1.65 1.82 1.76 2.08 1.77	$ \begin{array}{r} d_{N-N}(\text{\AA}) \\ 1.14 \\ 1.22 \\ 1.28 \\ 1.38 \\ 1.45 \\ - \end{array} $	$ \begin{array}{r} M(\mu_{\rm B}) \\ 1.02 \\ 0.00 \\ 1.03 \\ 0.49 \\ 2.05 \\ 0.58 \\ \end{array} $	$\begin{array}{c} Q(e) \\ 0.34 \\ 0.52 \\ 0.31 \\ 0.15 \\ -0.10 \\ 0.32 \end{array}$

Table S5 Adsorption energy (E_{ads} in eV), bond length of V-N and N-N (d in Å), total magnetic moment (M in μ_B) and Bader charge (Q in e) of various reaction intermediates adsorbed on V@GY via the enzymatic pathways, and the positive and negative values represent the acquisition and loss of electrons, respectively.

Enzymatic $E_{ads}(eV) = d_{V-N}(A) = d_{N-N}(A) = M(\mu_B) = Q(e)$	Enzymatic $E_{ads}(eV) = d_{V-N}(A) = d_{N-N}(A) = M(\mu_B) = Q(e)$
---	---

*N-*N	-0.60	1.17	2.12/2.15	0.74	0.45
*N-*NH	-2.71	1.25	1.97/1.96	0.00	0.56
*NH-*NH	-2.45	1.33	1.98/2.01	0.58	0.52
*NH-*NH ₂	-3.40	1.40	2.19/1.86	0.00	0.45
*NH2-*NH2	-1.93	1.45	2.18/2.16	0.00	-0.17
*NH2-*NH3	-4.44	1.87	_	0.00	0.46
*NH ₃	-1.76	2.13	_	0.00	-0.10

Table S6 The $\triangle ZPE$ and $\triangle S$ values of various reaction intermediates adsorbed on Mn@GY via the distal and alternating pathways, and V@GY via the enzymatic pathways.

Distal	*N-N	*N-NH	*N-NH ₂	*N	*NH	*NH ₂	*NH ₃
ΔZPE	0.203154	0.478745	0.798123	0.096019	0.333621	0.675701	1.007576
ΔS	0.000568	0.000573	0.000511	0.000149	0.000334	0.000343	0.000527
Alternating	*N-N	*N-NH	*NH-NH	*NH-NH ₂	*NH ₂ -NH ₂	*NH ₂	*NH ₃
ΔZPE	0.203154	0.478745	0.806456	1.141680	1.479819	0.675701	1.007576
ΔS	0.000568	0.000573	0.000631	0.000673	0.000892	0.000343	0.000527
Enzymatic	*N-*N	*N-*NH	*NH-*NH	*NH-*NH ₂	*NH2-*NH2	*NH2-*NH3	*NH ₃
ΔZPE	0.171071	0.486798	0.759923	1.135869	1.462867	1.442786	1.007576
ΔS	0.000697	0.000550	0.000670	0.000627	0.000696	0.001319	0.000527

Table S7 Adsorption energy (E_{ads} in eV), Bader charge on Mn atom (Q in e) and bond length of N-N (d_{N-N} in Å) N₂ adsorbed on Mn@GY using DFT and DFT+U calculation, respectively.

*N-N	DFT	DFT+U (U=4)	DFT+U (U=6)
$E_{ads}(eV)$	-0.33	-0.54	-0.47
Q (e)	5.57	5.77	5.57
$d_{\text{N-N}}$ (Å)	1.14	1.12	1.13