Supporting Information

Two-dimensional topological insulators exfoliated from

Na₃Bi-like Dirac semimetals

Xiaoqiu Guo ^{a#}, Ruixin Yu ^{a#}, Jingwen Jiang ^a, Zhuang Ma ^a, Xiuwen Zhang ^{*a}

^a Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic

Engineering, Shenzhen University, Shenzhen, 518060, China

Fig. S1 Electronic structures of bulk $P\overline{3}c1$ phase of (a) Na₃Bi, (b) K₃Bi and (c) Rb₃Bi from PBE + SOC. The dotted lines with different colors denote the band projection onto different atomic orbitals. The yellow squares indicate the positions of Dirac cones.

Fig. S2 Bonding/antibonding characters of the states of interlayer (a) Na-Bi, (b) Na-Na pairs in Na₃Bi and interlayer

(d) Mo-S, (e) S-S pairs in MoS_2 , as indicated by the calculated Crystal Orbital Hamiltonian Populations (COHPs). Electron localization function of (c) Na₃Bi and (f) MoS₂ with isosurfaces of 0.2. –COHP > 0, –COHP = 0 and –COHP < 0 mean the bonding, non-bonding and anti-bonding characters of each electronic state over the chemical bonds in the system, respectively.

Fig. S3 Bonding/antibonding characters of the states of interlayer (a) K-Bi, (b) K-K pairs in K₃Bi and interlayer (d) Rb-Bi, (e) Rb-Rb pairs in Rb₃Bi, as indicated by the calculated COHPs. Electron localization function of (c) K₃Bi and (f) Rb₃Bi with isosurfaces of 0.2. –COOP > 0, –COOP = 0 and COOP < 0 mean the bonding, non-bonding and antibonding characters of each electronic state over the chemical bonds in the system, respectively.

Fig. S4 Optimized structures of n-layer (n=1-4) Na₃Bi. The space group of monolayer, trilayer is P321, and that of bilayer, tetralayer is $P\overline{3}$.

Table S1 Topological invariant (Z_2) of r	n-layer (n = 1-4) Na ₃ Bi derived from the	P6 ₃ /mmc phase of Na ₃ Bi

Z_2	Na ₃ Bi
monolayer	1
bilayer	1
trilayer	1
tetralayer	1

Fig. S5 Electronic structures of (a) monolayer, (b) bilayer, (c) trilayer and (d) tetralayer Na₃Bi derived from the $P6_3/mmc$ phase of Na₃Bi, from PBE + SOC.

Fig. S6 Electronic structures of n-layer (n=1-4) of (a-d) K₃Bi and (e-h) Rb₃Bi derived from the $P\overline{3}c1$ phase, from PBE + SOC. The dotted lines with different colors denote the band projection onto different atomic orbitals.

Fig. S7 Electronic structures of Na₃Bi ($P\overline{3}c1$) with the maximum band gap under strain. The maximum band gaps of bilayer and tetralayer Na₃Bi under strain are 9.4% and 84% higher than the unstrained case. (a) Maximum band gap is achieved in bilayer at 14% expansion, (b) in tetralayer at 10% expansion.