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Figure S1. Pair RDFs (g(r), blue, left axis) and integrated number of bonds (N, orange, right axis) 

for the Cs3H(SeO4)2 superprotonic phase at 680 K (left) and 980 K (right). All cation  anion 

distances are typical for this group of compounds. 

 

The structures of the superprotonic phases of solid acids are substantially flexible. This promotes 

the very high protonic conductivity of these materials. The Cs ions in the superprotonic phase of 

Cs3H(SeO4)2 are located inside very large polyhedra composed of 10 to 12 oxygen atoms.1 They 

can shift within these large polyhedra. This leads to the Cs-Cs distances to be distributed over an 

extended range of distances. That is why the Cs-Cs RDF peaks are broad, the full width at half-

maximum values (FWHM) is 1 Å. It also could lead to the non-zero intensity between the peaks 

in the Cs-Cs RDF. This effect would be more pronounced at higher temperatures. Lee and 

Tuckerman2 performed an AIMD study of another superprotonic solid acid, CsH2PO4, and 

obtained similar results. They found that the RDF for Cs-Cs, P-P and Cs-P possess rather broad 

peaks with similar FWHM values of roughly 1 Å and concluded that this indicates that the shift of 

the Cs and PO4 units is not negligible, and the structure of the superprotonic phase of CsH2PO4 is 

considerably distorted from the perfect CsCl-type structure at any given instant time. They 

concluded that while the time averaged structure remains cubic, the overall flexibility might 

provide a better opportunity for each PO4 group to reorient so as to achieve a favorable hydrogen 

bond configuration in a given local environment. We obtained very similar results from our 

simulations. 
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Figure S2. OHO angle distributions of the hydrogen bonds in the Cs3H(SeO4)2 superionic phase 

at 680 K (a) and 980 K (b). The maximum corresponds to approximately 168 and 164 at 680 and 

980 K, respectively. These values are typical for normal hydrogen bonds. 

 

 

 

 

 

 

Figure S3. MSD values of H atoms vs. simulation time along the a (blue), b (orange) and c (gray) 

directions in the Cs3H(SeO4)2 superprotonic phase at 680 K which indicate the anisotropy of the 

proton diffusion in this phase. The proton diffusion is much faster along the a and b directions 

compared to that along the c direction. 
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Figure S4. MSD values of Cs atoms vs. simulation time in the Cs3H(SeO4)2 superprotonic phase 

at 680 K which indicate that there is no Cs diffusion in this phase. 

 

 

 

 

 

  

Figure S5. Hydrogen atom trajectories at 680 K (a) and 980 K (b). In addition to principal 

hydrogen bonds (PHBs) in (001) planes, supplementary hydrogen bonds (SHBs) were formed 

between (001) planes. 
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Figure S6. An example of a SeO4-tetrahedron libration: trajectories of the corresponding O atoms 

(a) a view perpendicular to the z-direction and (b) along the z-direction, (c-d) libration angles over 

simulation time for O1, O2, O3, and O4, respectively, at 680 K. The SeO4-tetrahedron rotation by 

100 occurred around the SeO3 bond at approximately 29 ps so that the top O1 atom occupied 

the base O2 site, the base O2 and O4 atoms moved to the base O4 and top O1 sites, respectively. 

The libration and rotation angles are in good agreement with earlier obtained experimental and 

computational results.1,3,4 
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