An origin of excess vibrational entropies at grain boundaries in Al, Si and MgO: A firstprinciples analysis with lattice dynamics

T. Yokoi¹, K. Ikawa¹, A. Nakamura¹, K. Matsunaga^{1,2}

¹Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan ²Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, 456-8587, Japan

S1. Grain boundary energy and excess volume at 0 K

Fig. S1. Zero-temperature grain boundary (GB) energy $({}^{\Delta E}{}^{static}{}_{GB})$ as a function of misorientation angle of two grains (2 θ) for (a) MgO, (b) Al and (c) Si. The red and blue lines correspond to the GBs with the [001] and [110] tilt axes, respectively. ${}^{\Delta E}{}^{static}{}_{GB}$ was calculated from DFT total energies.

Fig. S2. Excess volume (ΔV) as a function of misorientation angle of two grains (2 θ) for (a) MgO, (b) Al and (c) Si. The red and blue lines correspond to the GBs with the [001] and [110] tilt axes, respectively. ΔV was calculated using the lowest-energy structures at 0 K.

Fig. S3 Temperature dependence of GB free energy (ΔF_{GB}), excess internal energy (ΔE_{GB}^{vib}) and excess vibrational entropy multiplied by temperature ($T\Delta S_{GB}^{vib}$) for the $\Sigma 5(310)$ GB for (a) MgO, (b) Al and (c) Si.

Table S1. Zero-temperature grain boundary (GB) energy $({}^{\Delta E_{GB}^{static}})$ for the metastable structures used for lattice dynamics calculations. The value in the parentheses is the increase in ${}^{\Delta E_{GB}^{static}}$ from that of the lowest-energy structure.

Substance	Grain boundary	$\Delta E^{static}_{\ \ GB}$ [J/m ²]	
	Σ13(510)/[001]	1.96 (0.31)	
MgO	MgO Σ5(310)/[001]	1.86 (0.20)	
	$\Sigma 13(320)/[001]$	1.73 (0.004)	

	Σ9(221)/[110]	2.70 (0.51)
	$\Sigma 3(111)/[\bar{1}10]$	1.04 (0.35)
	$\Sigma_{3(112)/[110]}$	2.13 (0.02)
	Σ11(113)/[110]	2.61 (0.12)
Al	Σ5(310)/[001]	0.77 (0.24)
Si	Σ13(510)/[001]	0.66 (0.05)
	$\Sigma 5(310)/[001]$	0.76 (0.45)
	$\Sigma5(210)/[001]$	0.88 (0.53)
	$\Sigma 13(320)/[001]$	0.76 (0.19)
	Σ9(221)/[110]	0.69 (0.48)
	$\Sigma 3(112)/[\bar{1}10]$	1.23 (0.31)
	Σ11(113)/[110]	1.09 (0.28)