An origin of excess vibrational entropies at grain boundaries in Al, Si and MgO : A firstprinciples analysis with lattice dynamics

T. Yokoi ${ }^{1}$, K. Ikawa ${ }^{1}$, A. Nakamura ${ }^{1}$, K. Matsunaga ${ }^{1,2}$

${ }^{1}$ Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
${ }^{2}$ Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, 456-8587, Japan

S1. Grain boundary energy and excess volume at 0 K

Fig. S1. Zero-temperature grain boundary (GB) energy $\left(\Delta E_{G B}^{\text {static }}\right)$ as a function of misorientation angle of two grains (2 2) for (a) MgO , (b) Al and (c) Si . The red and blue lines correspond to the GBs with the [001] and [110] tilt axes, respectively. $\Delta E_{G B}^{\text {static }}$ was calculated from DFT total energies.

Fig. S2. Excess volume (ΔV) as a function of misorientation angle of two grains (2 2) for (a) MgO , (b) Al and (c) Si . The red and blue lines correspond to the GBs with the $[001]$ and $[110]$ tilt axes, respectively. ΔV was calculated using the lowest-energy structures at 0 K .

Fig. S3 Temperature dependence of GB free energy $\left({ }^{\Delta F_{G B}}\right.$), excess internal energy $\left({ }^{\left.\Delta E_{G B}^{v i b}\right) \text { and }}\right.$ excess vibrational entropy multiplied by temperature (${ }^{T \Delta S_{G B}^{v i b}}$) for the $\Sigma 5(310) \mathrm{GB}$ for (a) MgO , (b) Al and (c) Si .

Table S1. Zero-temperature grain boundary (GB) energy ($\left({ }^{\Delta E_{G B}^{s t a t i c}}\right)$ for the metastable structures used for lattice dynamics calculations. The value in the parentheses is the increase in $\Delta E_{G B}^{\text {static }}$ from that of the lowest-energy structure.

Substance	Grain boundary	$\Delta E_{G B}^{\text {static }}\left[\mathrm{J} / \mathrm{m}^{2}\right]$
MgO	$\Sigma 13(510) /[001]$	$1.96(0.31)$
	$\Sigma 5(310) /[001]$	$1.86(0.20)$
	$\Sigma 13(320) /[001]$	$1.73(0.004)$

	$\Sigma 9(221) /[110]$	2.70 (0.51)
	E3(111)/[110]	1.04 (0.35)
	E3(112)/[110]	2.13 (0.02)
	511(113)/[110]	2.61 (0.12)
A1	E5(310)/[001]	0.77 (0.24)
Si	213(510)/[001]	0.66 (0.05)
	E5(310)/[001]	0.76 (0.45)
	E5(210)/[001]	0.88 (0.53)
	E13(320)/[001]	0.76 (0.19)
	$\Sigma 9(221) /[110]$	0.69 (0.48)
	E3(112)/[110]	1.23 (0.31)
	511(113)/[110]	1.09 (0.28)

